Published on Web 08/09/2010
Silver-Catalyzed Late-Stage Fluorination
Pingping Tang, Takeru Furuya, and Tobias Ritter*
Department of Chemistry and Chemical Biology, HarVard UniVersity, 12 Oxford Street,
Cambridge, Massachusetts 02138
Received July 1, 2010; E-mail: ritter@chemistry.harvard.edu
Abstract: Carbon-fluorine bond formation by transition metal catalysis is difficult, and only a few methods
for the synthesis of aryl fluorides have been developed. All reported transition-metal-catalyzed fluorination
reactions for the synthesis of functionalized arenes are based on palladium. Here we present silver catalysis
for carbon-fluorine bond formation. Our report is the first example of the use of the transition metal silver
to form carbon-heteroatom bonds by cross-coupling catalysis. The functional group tolerance and substrate
scope presented here have not been demonstrated for any other fluorination reaction to date.
fluoride and high basicity of dry fluoride.6 Carbon-fluorine
Introduction
bond formation by transition metal catalysis is difficult,7 in part
Fluorinated aromatic compounds are used as pharmaceuticals,
agrochemicals, materials, and tracers for positron emission
tomography (PET).1 Fluorine incorporation often improves the
properties of functional molecules; for example, fluorine sub-
stituents can increase the metabolic stability and the rate and
extent of blood-brain barrier penetration of pharmaceuticals.2
Selective fluorination is important but challenging, especially
when the desired fluorinated molecules are complex, and
carbon-fluorine bond formation must occur at a late stage of
their synthesis.3 In this manuscript we present a silver-catalyzed
late-stage fluorination reaction of complex small molecules,
including polypeptides, polyketides, and alkaloids (eq 1). Our
report is the first example of silver catalysis for carbon-
heteroatom bond formation by cross-coupling chemistry. We
propose that silver-catalyzed late-stage fluorination proceeds by
a mechanism distinct from conventional cross-coupling chem-
istry.
due to strong ionic metal-fluoride bonding, and only a few
examples have been reported.8 Reductive elimination, the
product forming event in cross-coupling catalysis, becomes
increasingly difficult and requires harsher reaction conditions
in the bond formation series C-C, C-N, C-O, C-F.8d,9
Sanford8b and Yu8c have reported directed palladium-catalyzed
electrophilic aromatic fluorination. The advantage of both
transformations is the ability to convert C-H bonds into C-F
bonds. Challenges include the high reaction temperature (120-150
°C) and the need for directing and blocking groups on the arene
(4) For selected fluorination reactions, see: (a) Balz, G.; Schiemann, G.
Ber. Deutsch. Chem. Ges. 1927, 60, 1186. (b) Adams, D. J.; Clark,
J. H. Chem. Soc. ReV. 1999, 28, 225. (c) Sun, H.; DiMagno, S. G.
Angew. Chem., Int. Ed. 2006, 45, 2720. (d) Sandford, G. J. Fluorine
Chem. 2007, 128, 90. (e) Yamada, S.; Gavryushin, A.; Knochel, P.
Angew. Chem., Int. Ed. 2010, 49, 2215. (f) Anbarasan, P.; Neumann,
H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 2219.
(5) Baudoux, J.; Cahard, D. Org. React. 2007, 69, 347.
(6) Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug DiscoVery
DeV. 2008, 11, 803.
(7) For stoichiometric and catalytic transition-metal-mediated C-F bond
formation reactions, see: (a) Tius, M. A.; Kawakami, J. K. Synth.
Commun. 1992, 22, 1461. (b) Tius, M. A.; Kawakami, J. K. Synlett
1993, 207. (c) Tius, M. A.; Kawakami, J. K. Tetrahedron 1995, 51,
3997. (d) Akana, J. A.; Bhattacharyya, K. X.; Muller, P.; Sadighi,
J. P. J. Am. Chem. Soc. 2007, 129, 7736. (e) Kaspi, A. W.; Yahav-
Levi, A.; Goldberg, I.; Vigalok, A. Inorg. Chem. 2008, 47, 5. (f)
Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008,
47, 5993. (g) Gorske, B. C.; Mbofana, C. T.; Miller, S. J. Org. Lett.
2009, 11, 4318. (h) Wu, T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009,
131, 16355.
The synthesis of fluorinated arenes is challenging due to the
properties of fluorine.4 Electrophilic fluorination is often unse-
lective.5 Nucleophilic fluorination is complicated by strong
hydrogen bonding and the high hydration energy of the fluoride
anion, which results in the low nucleophilicity of hydrated
(8) (a) Subramanian, M. A.; Manzer, L. E. Science 2002, 297, 1665. (b)
Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 7134. (c) Wang, X.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc.
2009, 131, 7520. (d) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang,
Y.; Garc´ıa-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325,
1661.
(1) (a) Yamazaki, T.; Taguchi, T; Ojima, I. In Fluorine in Medicinal
Chemistry and Chemical Biology; Ojima, I., Ed.; Wiley-Blackwell:
United Kingdom, 2009. (b) Jeschke, P. ChemBioChem 2004, 5, 570.
(c) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun.
2007, 1003.
(9) (a) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling
Reactions; Wiley-VCH: Weinheim, 2004. (b) Muci, A. R.; Buchwald,
S. L. In Cross-Coupling Reactions; Miyaura, N., Ed.; Springer: Berlin,
2002. (c) Hartwig, J. F. Nature 2008, 455, 314. (d) Furuya, T.; Ritter,
T. J. Am. Chem. Soc. 2008, 130, 10060. (e) Ball, N. D.; Sanford, M. S.
J. Am. Chem. Soc. 2009, 131, 3796. (f) Furuya, T.; Benitez, D.;
Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A., III; Ritter, T.
J. Am. Chem. Soc. 2010, 132, 3793.
(2) Mu¨ller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(3) (a) Wilkinson, J. A. Chem. ReV. 1992, 92, 505. (b) O’Hagan, D. Chem.
Soc. ReV. 2008, 37, 308. (c) Furuya, T.; Klein, J. E. M. N.; Ritter, T.
Synthesis 2010, 11, 1804.
9
12150 J. AM. CHEM. SOC. 2010, 132, 12150–12154
10.1021/ja105834t 2010 American Chemical Society