Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC00289D
COMMUNICATION
Journal Name
Z. Hong, D. Y. Ong, S. K. Muduli, P. C. Too, G. H. Chan, Y. L.
Tnay, S. Chiba, Y. Nishiyama, H. Hirao, H. S. Soo, Chem. Eur.
J., 2016, 22, 7108.
This work demonstrates new use of the NaH‐iodide
composite for dearylative functionalization of arylphosphine
oxides to prepare functionalized tertiary phosphine oxides in a
concise operation. Further investigation on use of the NaH‐
iodide composite to explore other types of reductive
molecular transformations is ongoing in our laboratory.
This work was financially supported by Nanyang
Technological University and the Singapore Ministry of
Education (Academic Research Fund Tier 1: RG10/17) for S.C.
and The Tokyo Biochemical Research Foundation for R.T.
13 For use of NaH‐iodide composites as the unprecedented
Brønsted bases, see: (a) A. Kaga, H. Hayashi, H. Hakamata,
M. Oi, M. Uchiyama, R. Takita, S. Chiba, Angew. Chem. Int.
Ed., 2017, 56, 11807; (b) Y. Huang, G. H. Chan, S. Chiba,
Angew. Chem. Int. Ed., 2017, 56, 6544.
14 For reports on C(sp2)‐P bond formation driven by Pd‐
catalyzed dephenylation from triarylphosphines, see: (a) K.
Baba, M. Tobisu, N. Chatani, Org. Lett., 2015, 17, 70; (b) K.
Baba, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed., 2013, 52
11892.
,
15 For reports on aromatic substitution reactions of
arylphosphine oxides with alkyllithium or magnesium
reagents, see: (a) M. Stankevič, J. Pisklak, K. Włodarczyk,
Tetrahedron, 2016, 72, 810; (b) T. Shimada, H. Kurushima, Y.‐
Notes and references
1
(a) L. D. Quin, A Guide to Organophosphorus Chemistry,
Wiley, 2000; (b) P. J. Murphy, Organophosphorus Reagents:
A Practical Approach in Chemistry, Oxford University Press,
2004.
(a) P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek and
P. Dierkes, Chem. Rev., 2000, 100, 2741; (b) A. Börner,
Phosphorus Ligands in Asymmetric Catalysis: Synthesis and
Applications, John Wiley & Sons, 2008; (c) A. Grabulosa, P‐
stereogenic Ligands in Enantioselective Catalysis, Royal
Society of Chemistry, 2011.
S. Demkowicz, J. Rachon, M. Daśko, W. Kozak, RSC Adv.,
2016, 6, 7101.
S. S. van Berkel, M. B. van Eldijk, J. C. M. van Hest, Angew.
Chem. Int. Ed., 2011, 50, 8806.
(a) C. Queffélec, M. Petit, P. Janvier, D. A. Knight, B. Bujoli,
Chem. Rev., 2012, 112, 3777; (b) T. Baumagartner, R. Réau,
Chem. Rev., 2006, 106, 4681.
H. Cho, T. Hayashi, J. Org. Chem., 2001, 66
, 8854;
(c) N. C. Payne and D. W. Stephan, Can. J. Chem., 1980, 58
,
15; (d) D. Seyferth, D. E. Welch, J. K. Heeren, J. Am. Chem.
Soc., 1964, 86, 1100.
2
16 For use of allyl diphenylphosphineoxides for radical
allylation, see: G. Ouvry, B. Quiclet‐Sire, S. Z. Zard, Angew.
Chem. Int. Ed., 2006, 45, 5002.
17 For use of alkoxymethylphosphine oxides such as 4ak and 4al
for synthesis of vinyl ethers (known as the Horner‐Wittig
reaction), see: C. Earnshaw, C. J. Wallis, S. Warren, J. Chem.
Soc. Perkin Trans. 1, 1979, 12, 3099.
18 (a) M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev.,
2010, 110, 3600; (b) J. A. Ellman, Pure. Appl. Chem., 2003,
75, 39.
19 The present protocol has thus far not proven successful with
primary‐ or secondary‐alkylphosphine oxides due to inherent
Brønsted basicity of NaH.
3
4
5
6
7
For reviews, see: (a) I. Wauters, W. Debrouwer, C. V.
Stevens, Beilstein J. Org. Chem., 2014, 10, 1064; (b) H.
20 For reports on synthesis of unsymmetrical tertiary phosphine
oxides, see: Y. Nishiyama, Y, Hazama, S. Yoshida, T. Hosoya,
Org. Lett., 2017, 19, 3899, and references therein.
21 (a) M. Onoda, Y. Koyanagi, H. Saito, M. Bhanuchandra, Y.
Yorimitsu, Beilstein J. Org. Chem., 2013, 9, 1269.
(a) S. Sowa, M. Stankevic, A. Szmigielska, H. Maluszynska, A.
E. Koziol, K. M. Pietrusiewicz, J. Org. Chem., 2015, 80, 1672;
(b) S. S. Al Sulaimi, K. V. Rajendran, D. G. Gilheany, Eur. J.
Org. Chem., 2015, 2015, 5959; (c) K. V. Rajendran, D. G.
Gilheany, Chem. Commun., 2012, 48, 817; (d) G. Keglevich,
M. Fekete, T. Chuluunbaatar, A. Dobo, V. Harmat, L. Toke, J.
Chem. Soc., Perkin Trans. 1, 2000, 4451; (e) R. Köster, Y.
Morita, Angew. Chem., 1965, 77, 589.
Matano, H. Yorimitsu, Asian J. Org. Chem., 2017,
K. Nogi, H. Yorimitsu, Chem. Commun., 2017, 53, 4055.
22 (a) D. S. Surry, S. L. Buchwald, Chem. Sci., 2011, , 27; (b) D.
6, 257; (b)
2
S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed., 2008, 47
6338; (c) R. Martin, S. L. Buchwald, Acc. Chem. Res., 2008, 41
1461.
,
,
8
9
(a) C. A. Busacca, R. Raju, N. Grinberg, N. Haddad, P. James‐
Jones, H. Lee, J. C. Lorenz, A. Saha, C. H. Senanayake, J. Org.
Chem., 2008, 73, 1524; (b) T. Imamoto, S.‐i. Kikuchi, T. Miura,
23 Our materials characterization (ref. 12c) also revealed that
solvothermal treatment of NaH and LiI induces counter ion
methathesis to form the activated NaH with NaI and LiH. No
reaction was observed with LiH only and the LiH‐LiI
composite (see the ESI for details).
24 NaH has ionic character with the cubic halite crystal
structure composed of sodium cations and hydride anions: a)
R. E. Gawley, D. D. Hennings, Sodium Hydride in the
electronic Encyclopedia of Reagents for Organic Synthesis (e‐
EROS) (Ed.: D. Crich), John Wiley & Sons, UK, 2006; b) S.
Aldridge, A. J. Downs, Chem. Rev., 2001, 101, 3305.
25 Gaussianꢀ16 (RevisionꢀA.03), M. J. Frisch, et al., Gaussian Inc.,
Wallingford CT, 2016.
26 The calculated deprotonation step by phenylsodium species
is described in the ESI.
27 The reaction of triarylphosphine oxide 1c with NaD‐LiI
followed by treatment with H2O gave diarylphosphine oxide
2c in 57% yield and 1,3‐dimethoxybenzene in 80% yield with
39% D‐incorporation (see the ESI).
Y. Wada, Org. Lett., 2001, 3, 87; (c) S. Griffin, L. Heath, P.
Wyatt, Tetrahedron Lett., 1998, 39, 4405; (d) T. Imamoto, T.
Oshiki, T. Onozawa, T. Kusumoto, K. Sato, J. Am. Chem. Soc.,
1990, 112, 5244; (e) T. Imamoto, T. Kusumoto, N. Suzuki, K.
Sato, J. Am. Chem. Soc., 1985, 107, 5301; (f) P. D. Henson, K.
Naumann, K. Mislow, J. Am. Chem. Soc., 1969, 91, 5645.
(a) A. Buonomo, C. G. Eiden, C. C. Aldrich, Chem. Eur. J.,
2017, 23, 14434; (b) M. Mehta, I. Garcia de la Arada, M.
Perez, D. Porwal, M. Oestreich, D. W. Stephan,
Organometallics, 2016, 35, 1030; (c) M.‐L. Schirmer, S. Jopp,
J. Holz, A. Spannenberg, T. Werner, Adv. Synth. Catal., 2016,
358, 26; (d) Y. Li, L. Q. Lu, S. Das, S. Pisiewicz, K. Junge, M.
Beller, J. Am. Chem. Soc., 2012, 134, 18325; (e) H.‐C. Wu, J.‐
Q. Yu, J. B. Spencer, Org. Lett., 2004, 6, 4675.
10 M. Zablocka, B. Delest, A. Igau, A. Skowronska, J.‐P. Majoral,
Tetrahedron Lett., 1997, 38, 5997.
11 For a report on use of CaH2 at 350‐400 C, see: H. Fritzsche,
28 Another reaction pathway via nucleophilic aromatic
substitution, despite the higher energy barrier, was also
estimated by the DFT calculation. See the ESI.
U. Hasserodt, F. Korte, Chem. Ber., 1964, 97, 1988.
12 (a) D. Y. Ong, C. Tejo, K. Xu, H. Hirao, S. Chiba, Angew. Chem.
Int. Ed., 2017, 56, 1840; (b) P. C. Too, G. H. Chan, Y. L. Tnay,
H. Hirao, S. Chiba, Angew. Chem. Int. Ed., 2016, 55, 3719; (c)
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins