2624
J. S. Yadav et al. / Tetrahedron Letters 51 (2010) 2622–2624
O
References and notes
O
I2 (10 mol%)
O
O
1. (a) Stetter, H. In Methoden Org. Chem., 4th ed.; Houben-Weyl, 1952; Vol. 7/2b, p
1423.; (b) Barton, D. H. R.; Ollis, W. D. Comprehensive Organic Chemistry;
Pergamon Press: Oxford, 1979. p 1058.
+
toluene, 110 ºC
2. (a) Yao, X. Q.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884; (b) Nguyen, R.-V.; Yao,
X. Q.; Bohle, D. S.; Li, C.-J. Org. Lett. 2005, 7, 673; (c) Yao, X. Q.; Li, C.-J. J. Org.
Chem. 2005, 70, 5752.
3. (a) Liu, P. N.; Zhou, Z.-Y.; Lau, C.-P. Chem. Eur. J. 2007, 13, 8610; (b) Rueping, M.;
Nachtsheim, B. J.; Kuenkel, A. Synlett 2007, 1391; (c) Duan, Z.; Xuan, X.; Wu, Y.
Tetrahedron Lett. 2007, 48, 5157; (d) Kischel, J.; Michalik, D.; Zapf, A.; Beller, M.
Chem. Asian J. 2007, 2, 909.
4
2
3h
Scheme 2. Reaction between indene and acetyl acetone.
But the reaction proceeds well in the presence of 10 mol % of HI.
This clearly indicates that HI is responsible for the hydroalkylation,
which may be generated in situ from iodine and 1,3-diketone. This
method does not require the use of expensive or corrosive reagents
and no precautions need to be taken to exclude moisture from the
reaction medium. The scope and generality of this process are illus-
trated with respect to various olefins and 1,3-diketones and the re-
sults are presented in Table 1.10
In summary, we have described a simple and efficient protocol
for the intermolecular hydroalkylation of vinyl arenes with 1,3-
diketones using iodine as a catalyst under neutral conditions. The
remarkable features of this procedure are atom efficiency, high
conversions, operational simplicity and ready availability of re-
agents at low cost.
4. (a) Wang, G.-W.; Shen, Y. -B.; Wu, X. -L.; Wang, L. Tetrahedron Lett. 2008, 49,
5090; (b) Lanman, H. E.; Nguyen, R.-V.; Yao, X.; Chan, T. -H.; Li, C.-J. J. Mol. Catal.
A: Chem. 2008, 279, 218.
5. (a) Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 2056; (b) Pei, T.;
Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11290; (c) Liu, C.; Widenhoefer,
R. A. Tetrahedron Lett. 2005, 46, 285.
6. (a) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004, 43,
5350; (b) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 4526.
7. Gao, Q.; Zheng, B.-F.; Li, J.-H.; Yang, D. Org. Lett. 2005, 7, 2185.
8. (a) Togo, H.; Iida, S. Synlett 2006, 2159; (b) Lin, X.-F.; Cui, S.-L.; Wang, Y. G.
Tetrahedron Lett. 2006, 47, 4509; (c) Chen, W.-Y.; Lu, J. Synlett 2005, 1337; (d)
Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595; (e) Banik, B. K.;
Fernandez, M.; Alvarez, C. Tetrahedron Lett. 2005, 46, 2479; (f) Wang, S.-Y.
Synlett 2004, 2642; (g) Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett.
2005, 46, 5771; (h) Pukan, P. Synth. Commun. 2004, 34, 1065; (i) Zhou, Y.; Yan,
P. F.; Li, G. M.; Chen, Z. J. Chin. J. Org. Chem. 2009, 29, 1719; (j) Stavber, S.; Jereb,
M.; Zupan, M. Synthesis 2008, 1487.
9. (a) Yadav, J. S.; Reddy, B. V. S.; Hashim, S. R. J. Chem. Soc., Perkin Trans. 1 2000,
3025; (b) Yadav, J. S.; Reddy, B. V. S.; Premalatha, K.; Swamy, T. Tetrahedron Lett.
2005, 46, 2687; (c) Yadav, J. S.; Reddy, B. V. S.; Sabitha, G.; Reddy, G. S. K. K.
Synthesis 2000, 1532; (d) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Chand, P. K.;
Prasad, A. R. Synlett 2001, 1638; (e) Yadav, J. S.; Reddy, B. V. S.; Rao, T. S.;
Krishna, B. B. M. Tetrahedron Lett. 2009, 50, 5351.
Acknowledgement
T.S.R., K.B. and A.R. thank the CSIR, New Delhi, for the award of
fellowships.
10. Experimental procedure, spectral data for new compounds and copies of 13C
NMR spectra are provided in Supplementary data.
Supplementary data
Supplementary data associated with this article can be found, in