10.1002/anie.201905129
Angewandte Chemie International Edition
RESEARCH ARTICLE
oxygen (Figure 5b). The distinct consumption of ADMA
demonstrated the ISC on at pH 6.0 and ISC off at pH 7.4. Most
Organic Electronics and Information Displays, the Natural
Science Foundation of Jiangsu Province of China (No.
BK20171020), the China Postdoctoral Science Foundation (No.
2018T110488), the Shenzhen Basic Research Project of
notably, PE5 exhibited
a
pH-reversible ISC for smart
applications requiring switchable ISC (Figure 5b), which was
unobtainable in previous studies. In addition, the excellent
photostability and moderate absorption of PE5 was also
demonstrated in Figure S11 and 12, highlighting their practical
application in PDT.
Science
and
Technology
under
Grant
(No.
JCYJ20170302142433007), open research fund of Key
Laboratory for Organic Electronics and Information Displays,
and Synergetic Innovation Center for Organic Electronics and
Information Displays.
pH-activatable PDT. Given the pH-reversible ISC, PE5 was
further utilized as a smart organic PS for the proof-of-concept
application in pH-activatable PDT (Figure S13). It is theoretically
conceivable that PE5 can only produce 1O2 in tumor
microenvironment (acid) due to the switch-on of ISC at pH 6.0.
Conflict of interest
1
As anticipated, characteristic O2 emission of PE5 at 1270 nm
The authors declare no conflict of interest.
1
demonstrated its pH-activatable O2 generation (Figure 5c). The
1O2 quantum yield (Figure S14) of PE5 was calculated to be
48% at pH 6.0 and 5% in a neutral environment (pH = 7.4). We
stimulated the tumor microenvironment by adjusting the pH
Keywords: intersystem crossing • reversible switching • pure
organic material • smart photodynamic therapy • ultrafast
spectroscopy
1
value of a culture solution.[19] Intracellular O2 imaging in Figure
5d demonstrated the pH-activatable 1O2 of PE5. In contrast,
commercial PS, TMPyP4, exhibited undifferentiated 1O2
generation, which causes unwanted damage to healthy cells or
tissues. Finally, the in vitro PDT effect of PE5 was evaluated by
assessing the cellular phototoxicity, in which green-emissive
calcein AM (living cell) and red-emissive propidium iodide (PI,
[1]
a) D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer
2003, 3, 380-387; b) T. J. Dougherty, C. J. Gomer, B. W. Henderson, G.
Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst
1998, 90, 889-905; c) H. Wang, S. Jiang, S. Chen, D. Li, X. Zhang, W.
Shao, X. Sun, J. Xie, Z. Zhao, Q. Zhang, Y. Tian, Y. Xie, Adv. Mater.
2016, 28, 6940-6945; d) L. Bañares, Nat. Chem. 2019, 11, 103-104; e)
D.-H. Kim, A. D’Aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L.
Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W.
Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, C. Adachi, Nat. Photonics
2018, 12, 98-104; f) L. Bergmann, G. J. Hedley, T. Baumann, S. Brase,
I. D. Samuel, Sci. Adv. 2016, 2, e1500889; g) S. M. A. Fateminia, Z.
Mao, Z. Yang, S. Xu, Z. Chi, B. Liu, Angew. Chem., Int. Ed. 2017, 56,
12160-12164; h) X. Zhen, Y. Tao, Z. F. An, P. Chen, C. J. Xu, R. F.
Chen, W. Huang, K. Y. Pu, Adv. Mater. 2018, 29, 1606665.
a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,
492, 234-238; b) J. F. Lovell, T. W. Liu, J. Chen, G. Zheng, Chem. Rev.
2010, 110, 2839-2857.
dead cell) cellular viability kit was used to distinguish the dead
20]
cells from the live cells (Figure 5e).[8b,
Compared with the
unselective damage of TMPyP4, PE5 possesses outstanding
selectivity for the potential application in more precise
photodynamic therapy of tumor cells. We would like to mention
here that the application of PE5 to PDT in vivo may be limited by
the fact that the excitation wavelength does not fall into the
biological transparency window (750-900 nm). However, there
are many plausible ways to overcome this hindrance via, for
instance, using the upconverting nanophosphorsor even in situ
photon upconversion in tissue and two-photon excitation in near-
infrared region.[20-21]
[2]
[3]
[4]
[5]
[6]
[7]
Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z.
Tang, Nat. Commun. 2017, 8, 416.
Z. Yu, Y. Wu, L. Xiao, J. Chen, Q. Liao, J. Yao, H. Fu, J. Am. Chem.
Soc. 2017, 139, 6376-6381.
O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205-
210.
Conclusion
J. Z. Zhao, W. H. Wu, J. F. Sun, S. Guo, Chem. Soc. Rev. 2013, 42,
5323-5351.
We have presented experimental demonstration and theoretical
verification of CBT-enhanced ISC in p-phenyleneethynylene-
based POMs, which not only reveals a concise yet reliable
approach to design novel POMs with high ΦISC but also enables
a deeper understanding of ISC switchability. Moreover, easily-
tuneable ISC not only allows an advanced PDT paradigm with
precision not currently achievable by available PS, but also
opens up fascinating opportunities for triplet-state-related
applications such as in switchable photochemical synthesis.
a) W. Hu, T. He, R. Jiang, J. Yin, L. Li, X. Lu, H. Zhao, L. Zhang, L.
Huang, H. Sun, W. Huang, Q. L. Fan, Chem. Commun. 2017, 53, 1680-
1683; b) W. Hu, M. Xie, H. Zhao, Y. Tang, S. Yao, T. He, C. Ye, Q.
Wang, X. Lu, W. Huang, Q. Fan, Chem. Sci. 2018, 9, 999-1005.
a) Y. Han, L. H. Spangler, J. Phys. Chem. A 2002, 106, 1701-1707; b)
L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, G. G.
Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307-8312.
a) M. Pollum, S. Jockusch, C. E. Crespo-Hernandez, J. Am. Chem. Soc.
2014, 136, 17930-17933; b) K. Nagarajan, A. R. Mallia, K.
Muraleedharan, M. Hariharan, Chem. Sci. 2017, 8, 1776-1782.
[8]
[9]
[10] Y. Wu, Y. Zhen, Y. Ma, R. Zheng, Z. Wang, H. Fu, J. Phys. Chem. Lett.
2010, 1, 2499-2502.
Acknowledgements
[11] G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater.
2009, 8, 747-751.
This work was financially supported by the National Natural
Science Foundation of China (No. 21674048 and 61805118),
the National Basic Research Program of China (973 Program,
grant number 2015CB932200), Synergetic Innovation Center for
[12] a) D. Beljonne, Z. Shuai, G. Pourtois, J. L. Bredas, J. Phys. Chem. A
2001, 105, 3899-3907; b) X. F. Chen, C. Xu, T. Wang, C. Zhou, J. J. Du,
Z. P. Wang, H. X. Xu, T. Q. Xie, G. Q. Bi, J. Jiang, X. P. Zhang, J. N.
This article is protected by copyright. All rights reserved.