to the human muscarinic acetylcholine receptor and reduces
contractions of the bladder muscles.8 The succinate salt of
1f, marketed under the trade name Vesicare, is an FDA
approved treatment for overactive bladder.
Three main strategies have been developed for the enan-
tioselective syntheses of THIQs. The most common approach
involves a Bischler-Napieralski cyclization followed by
reduction of the resulting imine with a chiral hydride
reducing agent or catalytic hydrogenation in the presence of
a chiral catalyst.9 A second strategy employs asymmetric
Pictet-Spengler condensations.10 Finally, chiral THIQs have
been prepared by the introduction of nucleophiles or elec-
trophiles to the 1-position of isoquinoline derivatives.11
Herein, we report a direct and efficient method to access
chiral 1-arylTHIQs by the asymmetric addition of arylzinc
reagents to 3,4-dihydroisoquinoline N-oxide. In the optimized
procedure, we use pinacol esters of boronic acids as
precursors of the arylzinc reagents. Excellent enantioselec-
tivities (97%-99% ee) are achieved with a range of arylzinc
reagents using a chiral N-Boc ethylenediamine ligand. We
demonstrate the utility of this method by performing an
enantioselective synthesis of Solifenacin.
We selected arylboroxines as the precursors to arylzinc
reagents since they transmetallate smoothly with Et2Zn to
give predominantly the mixed arylethylzinc species (Figure
2, eq 2).12 In addition, a variety of boroxines can be prepared
by dehydrating commercially available boronic acids. The
modular, chiral ethylenediamine ligands (Figure 2, eq 1) are
derived from amino acids and incorporate tertiary amine,
amino acid side chain, and N-carbamoyl substituents that can
be tuned to optimize reactivity and stereoselectivity.11i,13
Figure 2. (1) Formation of the active catalyst L* by reaction of
ligands 2a-f with Et2Zn. (2) L* promoted enantioselective addition
of PhZnEt to 3,4-dihydroisoquinoline N-oxide.
Following deprotonation, the two nitrogen atoms provide a
bidentate coordination site for zinc. Initial studies indicated
that toluene was the best solvent for the arylation of 3,4-
dihydroisoquinoline N-oxide. We settled on a mixed solvent
of 2:1 toluene:CH2Cl2, which behaved similarly to pure
toluene but gave improved solubility of the boroxines.
Table 1 shows the effect of the ligand structure on the
yield and enantioselectivity of the reaction using phenyl-
boroxine as the arylzinc precursor. All of the reactions give
good yields of compound 3a. In terms of stereoselectivity,
ꢀ-branched amino acid side chains such as the sec-butyl
group of Ile or the isopropyl group of Val are preferred over
ligands with sterically demanding but non-ꢀ-branched side
chains such as Cys(Trt). In addition, ligands with cyclic
tertiary amines (entries 1 and 5) are preferred over noncyclic
analogues (entry 6). We selected ligand 2a for further study.
Ligand 2a promotes the addition of a variety of arylzinc
reagents, derived from the corresponding boroxines, to 3,4-
dihydroisoquinoline N-oxide to give the chiral hydroxy-
lamines 3a-h (Table 2). Yields for the reactions range from
83% to 97%. Enantioselectivities for most of the substrates
are good and range from 91% to 97% ee (entries 1-6).
However, for two of the substrates (entries 7 and 8) we
observed somewhat lower stereoselectivities. All of the other
(6) Tiwari, R. K.; Singh, D.; Singh, J.; Chhillar, A. K.; Chandra, R.;
Verma, A. K. Eur. J. Med. Chem. 2006, 41, 40–49.
(7) (a) Cheng, P.; Huang, N.; Jiang, Z. Y.; Zhang, Q.; Zheng, Y. T.;
Chen, J. J.; Zhang, X. M.; Ma, Y. B. Bioorg. Med. Chem. Lett. 2008, 18,
2475–2478. (b) Chen, K. X.; Xie, H. Y.; Li, Z. G.; Gao, J. R. Bioorg. Med.
Chem. Lett. 2008, 18, 5381–5386.
(8) (a) Naito, R.; Yonetoku, Y.; Okamoto, Y.; Toyoshima, A.; Ikeda,
K.; Takeuchi, M. J. Med. Chem. 2005, 48, 6597–6606. (b) Ohtake, A.;
Ukai, M.; Hatanaka, T.; Kobayashi, S.; Ikeda, K.; Sato, S.; Miyata, K.;
Sasamata, M. Eur. J. Pharmacol. 2004, 492, 243–250. (c) Cardozo, L.;
Lisec, M.; Millard, R.; Trip, O. V.; Kuzmin, I.; Drogendijk, T. E.; Huang,
M.; Ridder, A. M. J. Urology 2004, 172, 1919–1924. (d) Smulders, R. A.;
Krauwinkel, W. J.; Swart, P. J.; Huang, M. J. Clin. Pharmacol. 2004, 44,
1023–1033.
(9) (a) Hajipour, A. R.; Hantehzadeh, M. J. Org. Chem. 1999, 64, 8475–
8478. (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102.
(c) Lu, S. M.; Wang, Y. Q.; Han, X. W.; Zhou, Y. G. Angew. Chem., Int.
Ed. 2006, 45, 2260–2263.
(10) (a) Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamagu-
chi, K.; Nakagawa, M. J. Org. Chem. 1998, 63, 6348–6354. (b) Taylor,
M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558–10559. (c)
Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086–
1087. (d) Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van
Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485–
7487.
(12) (a) Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850–
14851. (b) Liu, X. Y.; Wu, X. Y.; Chai, Z.; Wu, Y. Y.; Zhao, G.; Zhu,
S. Z. J. Org. Chem. 2005, 70, 7432–7435. (c) Wu, X. Y.; Liu, X. Y.; Zhao,
G. Tetrahedron: Asymmetry 2005, 16, 2299–2305. (d) Chai, Z.; Liu, X. Y.;
Wu, X. Y.; Zhao, G. Tetrahedron: Asymmetry 2006, 17, 2442–2447. (e)
Jimeno, C.; Sayalero, S.; Fjermestad, T.; Colet, G.; Maseras, F.; Perica`s,
M. A. Angew. Chem., Int. Ed. 2008, 47, 1098–1101. (f) Magnus, N. A.;
Anzeveno, P. B.; Coffey, D. S.; Hay, D. A.; Laurila, M. E.; Schkeryantz,
J. M.; Shaw, B. W.; Staszak, M. A. Org. Process Res. DeV. 2007, 11, 560–
567. (g) Fandrick, D. R.; Fandrick, K. R.; Reeves, J. T.; Tan, Z.; Johnson,
C. S.; Lee, H.; Song, J. J.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2010,
12, 88–91. (h) Fujita, M.; Nagano, T.; Schneider, U.; Hamada, T.; Ogawa,
C.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 2914–2915.
(11) (a) Rishel, M. J.; Amarasinghe, K. K. D.; Din, S. R.; Johnson, B. F.
J. Org. Chem. 2009, 74, 4001–4004. (b) Taylor, M. S.; Tokunaga, N. T.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6700–6704. (c) Murahashi,
S.-I.; Imada, Y.; Kawakami, T.; Harada, K.; Yonemushi, Y.; Tomita, N.
J. Am. Chem. Soc. 2002, 124, 2888–2889. (d) Taylor, A. M.; Schreiber,
S. L. Org. Lett. 2006, 8, 143–146. (e) Itoh, T.; Miyazaki, M.; Fukuoka, H.;
Nagata, K.; Ohsawa, A. Org. Lett. 2006, 8, 1295–1297. (f) Ukaji, Y.;
Shimuzu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K. Chem. Lett. 1997, 1,
59–60. (g) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K.
Bull. Chem. Soc. Jpn. 2000, 73, 447–452. (h) Ukaji, Y.; Yoshida, Y.;
Inomata, K. Tetrahedron: Asymmetry 2000, 11, 733–736. (i) Wang, S.; Seto,
C. T. Org. Lett. 2006, 8, 3979–3982.
(13) (a) Richmond, M. L.; Seto, C. T. J. Org. Chem. 2003, 68, 7505–
7508. (b) Richmond, M. L.; Sprout, C. M.; Seto, C. T. J. Org. Chem. 2005,
70, 8835–8840. (c) Sprout, C. M.; Richmond, M. L.; Seto, C. T. J. Org.
Chem. 2005, 70, 7408–7417.
Org. Lett., Vol. 12, No. 12, 2010
2691