1578
D. Gerlach et al. · Silicon(IV) Chelates of an (ONN’)-Tridentate Pyrrole-2-Carbaldimine Ligand
1H NMR (400 MHz, CDCl3): δ = 6.15 – 6.17 (m, 2 H, the non-hydrogen atoms. The hydrogen atoms on carbon
arPyrrol), 6.64 (s, 2 H, arPyrrol), 6.78 (d, J = 8.0 Hz, 2 H, were refined isotropically in idealized positions. The hydro-
ar), 6.83 (m, 2 H, ar), 6.88 – 6.89 (m, 2 H, arPyrrol), 7.09 gen atoms bound to the nitrogen atoms were found by analy-
(m, 2 H, ar), 7.40 (dd, 3J = 7.8, 4J = 1.0 Hz, 2 H, ar). –
sis of the residual electron density and were refined isotrop-
ically without bond length restraints. Selected parameters of
data collection and structure refinement are summarized in
Table 6.
CCDC 744885 (LSiPhtBu), CCDC 744883 (LSiPh2),
CCDC 744884 ((LH)PhtBuSi-O-SiPhtBu(LH)) and CCDC
744882 (L2Si) contain the supplementary crystallographic
data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre
1
13C{ H} NMR (100 MHz, CDCl3): δ = 112.7, 116.1, 116.6,
118.3, 119.9, 128.4, 128.8, 131.7, 133.0, 141.7 (ar), 152.5
1
(C=N). – 29Si{ H} NMR (79.5 MHz, CDCl3): δ = −160.3. –
C22H16N4O2Si (396.5): calcd. C 66.65, H 4.07, N 14.13;
found C 66.63, H 4.05, N 13.66.
Crystal structure determinations
Data were collected on Bruker Apex II diffractome-
ter equipped with a CCD area detector using graphite-
˚
monochromated MoKα radiation (λ = 0.71073 A). The
Acknowledgement
structures were solved by Direct Methods (SHELXS [16])
and refined by full-matrix least-squares methods on F2
(SHELXL [17]) with anisotropic displacement parameters for
D. G. is grateful to Deutscher Akademischer Austausch
Dienst (DAAD) for the award of a scholarship.
[1] For reviews on hypercoordinate silicon compounds see
for example: a) D. Kost, I. Kalikhman, Acc. Chem.
Res. 2009, 42, 303 – 314; b) D. Kost, I. Kalikhman,
Adv. Organomet. Chem. 2004, 50, 1 – 106; c) R. Tacke,
M. Pu¨lm, B. Wagner, Adv. Organomet. Chem. 1999, 44,
221 – 273; d) C. Chuit, R. J. P. Corriu, C. Reye, J. C.
Young, Chem. Rev. 1993, 93, 1371 – 1448.
A. Stammler, H. -G. Stammler, Z. Anorg. Allg. Chem.
2009, 635, 1326 – 1334; o) M. Yamamura, N. Kano,
T. Kawashima, Z. Anorg. Allg. Chem. 2009, 635,
1295 – 1299; p) A. R. Bassindale, D. J. Parker, P. G.
Taylor, R. Turtle, Z. Anorg. Allg. Chem. 2009, 635,
1288 – 1294; q) E. P. A. Couzijn, D. W. F. van den En-
gel, J. C. Slootweg, F. J. J. de Kanter, A. W. Ehlers,
M. Schakel, K. Lammertsma, J. Am. Chem. Soc. 2009,
131, 3741 – 3751.
[2] For recent publications dealing with hypercoordinate
silicon compounds see for example: a) A. Ka¨mpfe,
E. Kroke, J. Wagler, Eur. J. Inorg. Chem. 2009, 1027 –
1035; b) K. Lippe, D. Gerlach, E. Kroke, J. Wa-
gler, Organometallics 2009, 28, 621 – 629; c) G. W.
Fester, J. Wagler, E. Brendler, U. Bo¨hme, D. Ger-
lach, E. Kroke, J. Am. Chem. Soc. 2009, 131,
6855 – 6864; d) J. Wagler, G. Roewer, D. Ger-
lach, Z. Anorg. Allg. Chem. 2009, 635, 1279 –
1287; e) E. Brendler, T. Heine, A. F. Hill, J. Wa-
gler, Z. Anorg. Allg. Chem. 2009, 635, 1300 – 1305;
f) E. Kertsnus-Banchik, E. Sela, J. Wagler, I. Ka-
likhman, D. Kost, Z. Anorg. Allg. Chem. 2009, 635,
1321 – 1325; g) S. Metz, C. Burschka, R. Tacke, Chem.
Asian J. 2009, 4, 581 – 586; h) S. Metz, C. Burschka,
R. Tacke, Organometallics 2009, 28, 2311 – 2317;
i) B. Theis, S. Metz, F. Back, C. Burschka, R. Tacke,
Z. Anorg. Allg. Chem. 2009, 635, 1306 – 1312;
j) I. Kalikhman, E. Kertsnus-Banchik, B. Gostevskii,
N. Kocher, D. Stalke, D. Kost, Organometallics
2009, 28, 512 – 516; k) S. Yakubovich, B. Gostevskii,
I. Kalikhman, D. Kost, Organometallics 2009, 28,
4126 – 4132; l) E. P. A. Couzijn, J. C. Slootweg, A. W.
Ehlers, K. Lammertsma, Z. Anorg. Allg. Chem.
2009, 635, 1273 – 1278; m) F. Riedel, A. Oehlke,
S. Spange, Z. Anorg. Allg. Chem. 2009, 635, 1335 –
1340; n) A. Bockholt, P. Jutzi, A. Mix, B. Neumann,
[3] a) J. Wagler, G. Roewer, Z. Naturforsch. 2006,
61b, 1406 – 1412; J. Wagler, U. Bo¨hme, G. Roewer,
Organometallics 2004, 24, 6066 – 6069; c) J. Wagler,
T. Doert, G. Roewer, Angew. Chem. 2004, 116, 2495 –
2498; Angew. Chem. Int. Ed. 2004, 43, 2441 – 2444.
[4] a) M. Yamamura, N. Kano, T. Kawashima, T. Mat-
sumoto, J. Harada, K. Ogawa, J. Org. Chem. 2008, 73,
8244 – 8249; b) J. Wagler, G. Roewer, Inorg. Chim.
Acta 2007, 360, 1717 – 1724; c) J. Wagler, D. Ger-
lach, U. Bo¨hme, G. Roewer, Organometallics 2006, 25,
2929 – 2933; d) S. Yamaguchi, S. Akijama, K. Tamao,
J. Organomet. Chem. 2002, 652, 3 – 9; e) I. El-Sayed,
Y. Hatanaka, S. Onozawa, M. Tanaka, J. Am. Chem.
Soc. 2001, 123, 3597 – 3598.
[5] a) K. Lippe, D. Gerlach, E. Kroke, J. Wagler, Inorg.
Chem. Commun. 2008, 11, 492 – 496; b) G. Gonza´lez-
Garc´ıa, J. A. Gutie´rrez, S. Cota, S. Metz, R. Berter-
mann, C. Burschka, R. Tacke, Z. Anorg. Allg. Chem.
2008, 634, 1281 – 1286; c) J. Wagler, A. F. Hill,
Organometallics 2008, 27, 6579 – 6586; d) D. Ger-
lach, E. Brendler, T. Heine, J. Wagler, Organometallics
2007, 26, 234 – 240; e) J. Wagler, D. Gerlach,
G. Roewer, Inorg. Chim. Acta 2007, 360, 1935 – 1942.
[6] a) J. A. Castro, J. Romero, J. A. Garcia-Vazquez,
A. Macias, A. Sousa, U. Englert, Polyhedron 1993,
Unauthenticated
Download Date | 11/18/19 2:50 AM