minimization of substrate preactivation in metal-catalyzed
processes led us to investigate the possibility of the direct
dehydrogenative annulation (DDA) of indolecarboxamides
with internal alkynes leading to ꢀ- and γ-carbolinone
derivatives.
Scheme 1. Retrosynthetic Analysis of ꢀ- and γ-Carbolinones
Table 1. Optimization of Reaction Conditions for the
Preparation of 3aaa
intramolecular cyclization through path a, b, or c is the most
common strategy (Scheme 1). For example, Beccalli et al.
described an intramolecular Heck reaction of 2- and 3-io-
doindole derivatives for the synthesis of ꢀ- or γ-carbolino-
nes.6 Padwa and co-workers developed an approach to
ꢀ-carbolinones in high yields through a AuCl3-catalyzed
cycloisomerization of N-propargylindole-2-carboxamides.7
However, several steps are generally required to prepare the
relative complicated substrates for these intramolecular
annulations. Alternatively, we envisioned that the ꢀ- and
γ-carbolinones presumably can be constructed through an
intermolecular annulation between indolecarboxamides and
alkynes via C-C and C-N bond formations (path d,
Scheme 1).
Compared with the traditional methods, C-H activation
presents an advantage of convenience and atom economy,
which has been applied successfully in synthesis of some
aromatic and heteroaromatic compounds such as naphtha-
lenes, indoles, isoquinolines, carbazoles, benzothiazoles, and
pyridines.8 Recently, we developed the direct dehydrogena-
tive annulation (DDA) of simple anilines or biaryls with
internal alkynes to generate indoles, carbazole, and carboline
derivatives using O2 as the oxidant.9 Our interest in the
additives
(equiv)
temp
(°C)
yield
(%)b
entry
oxidant
solvent
1
2
3
4
5
6
7c
8
O2 (1 atm)
O2 (1 atm)
O2 (1 atm)
air
air
air
s
DMF
DMF
DMA
DMA
DMA
DMA
DMA
DMA
100
100
100
100
100
100
100
50
18
58
69
70
76
86
72
92
K2CO3 (3.0)
K2CO3 (3.0)
K2CO3 (1.0)
CsOPiv (1.0)
TBAB (1.0)
TBAB (1.0)
TBAB (1.0)
air
air
a Reaction conditions: 1a (0.20 mmol), 2a (0.25 mmol), Pd(OAc)2 (0.02
mmol), and solvent (2.0 mL) were heated in an open tube for 15 h. DMF
) N,N-dimethylformamide, DMA ) N,N-dimethylacetamide, Piv ) pivalyl,
TBAB ) tetra-n-butylammonium-bromide. b Isolated yield. c 5 mol % of
Pd(OAc)2 was used.
We initiated this project by investigating the reaction of
N-butyl-1-methyl-1H-indole-2-carboxamide (1a) and diphe-
nylethyne (2a) catalyzed by Pd(OAc)2. When O2 was used
as the oxidant in this reaction, the expected ꢀ-carbolinone
product 3aa was successfully produced in 18% yield at 100
°C in DMF (entry 1, Table 1). To our delight, 58% of 3aa
was achieved in the presence of 3.0 equiv of K2CO3 (entry
2, Table 1). It is noteworthy that air could serve as the
oxidant as good as O2 in this reaction (cf. entries 3 and 4).
The reaction in DMA gave better results than that in DMF
(cf. entries 2 and 3, Table 1). Moreover, the amount of the
additive can be reduced to 1 equiv. The additives screen
revealed that the yield of 3aa could be further increased to
86% by using TBAB as the additive (entry 6, Table 1). The
yield decreased slightly with the lower catalyst loading (5
mol %) (cf. entries 6 and 7, Table 1). After screening on
different parameters, the highest yield (92%) of 3aa was
achieved, when the reaction was carried out at 50 °C (entry
8, Table 1).
(4) Clark, R. D.; Miller, A. B.; Berger, J.; Repke, D. B.; Weinhardt,
K. K.; Kowalczyk, B. A.; Eglen, R. M.; Bonhaus, D. W.; Lee, C.-H.; Michel,
A. D.; Smith, W. L.; Wong, E. H. F. J. Med. Chem. 1993, 36, 2645.
(5) (a) Cincinelli, R.; Dallavalle, S.; Merlini, L. Synlett 2008, 1309. (b)
Lu, S.; Zhang, W.; Pan, J.; Zhang, J. Synthesis 2008, 1517. (c) Miki, Y.;
Kuromatsu, M.; Miyatake, H.; Hamamoto, H. Tetrahedron Lett. 2007, 48,
9093. (d) Hudlicky, T.; Rinner, U.; Finn, K. F.; Ghiviriga, I. J. Org. Chem.
2005, 70, 3490. (e) Engler, T. A.; Wanner, J. J. Org. Chem. 2000, 65, 2444.
(f) Wang, S.; Dong, Y.; Wang, X.; Hu, X.; Liu, J.; Hu, Y. Org. Biomol.
Chem. 2005, 3, 911. (g) Mmutlane, E. M.; Harris, J. M.; Padwa, A. J. Org.
Chem. 2005, 70, 8055. (h) Tahri, A.; De Borggraeve, W.; Buysens, K. J.;
Van Meervelt, L.; Compernolle, F.; Hoornaert, G. J. Tetrahedron 1999,
55, 14675. (i) Engler, T. A.; Wanner, J. J. Org. Chem. 2000, 65, 2444.
(6) Baccalli, E. M.; Broggini, G.; Marchesini, A.; Rossi, E. Tetrahedron
2002, 58, 6673.
(7) England, D. B.; Padwa, A. Org. Lett. 2008, 10, 3631.
(8) For a recent review, see: (a) Thansandote, P.; Lautens, M.
Chem.sEur. J. 2009, 15, 5874. For some recent examples, see: (b) Umeda,
U.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2008, 47,
4019. (c) Wu, Y.-T.; Huang, K.-H.; Shin, C.-C.; Wu, T.-C. Chem.sEur. J.
2008, 14, 6697. (d) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int.
Ed. 2009, 48, 572. (e) Guimond, N.; Fagnou, K. J. Am. Chem. Soc. 2009,
131, 12050. (f) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. (g) Inamoto, K.; Hasegawa,
C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10, 5147. (h) Wu¨rtz, S.; Rakshit,
S.; Neumann, J. J.; Dro¨ge, T.; Glorius, F. Angew. Chem., Int. Ed 2008, 47,
7230. (i) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 5636.
(j) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem.,
Int. Ed. 2008, 47, 9462. (k) Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.;
Zhang, K.; Yang, L.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 12046.
Under these optimized reaction conditions, although free
(NH)-indoles 1b could not be transformed into the desired
products 3ba (entry 2, Table 2), substrate with protecting
groups such as Bn was well tolerated to give 3ca (entry 3,
(9) (a) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N.
Angew. Chem., Int. Ed. 2009, 48, 4572. (b) Shi, Z.; Ding, S.; Cui, Y.; Jiao,
N. Angew. Chem., Int. Ed. 2009, 48, 7895. (c) Ding, S.; Shi, Z.; Cui, Y.;
Jiao, N. Org. Lett. 2010, 12, 1540. (d) Shi, Z.; Zhang, B.; Cui, Y.; Jiao, N.
Angew. Chem., Int. Ed. 2010, 49, 4036.
Org. Lett., Vol. 12, No. 13, 2010
2909