Article
Inorganic Chemistry, Vol. 49, No. 13, 2010 6173
nitrene transfer reactions, particularly aminations5 and
aziridinations.6
complexes have never been completely characterized, and
the assignments remain in doubt. In the late 1980s and early
1990s, work by Bergman and others generated Os,9 Ir,10 and
Ru11 half-sandwich complexes with terminal imido ligands,
which were characterized using X-ray crystallography. In the
last 10 years, several research groups have published isolable
first-row transition metal complexes with terminal imido
ligands including those of FeII,12 FeIII,13 FeIV,14 FeV,15
CoIII,16 NiII,17 and NiIII.18 All of these isolated group 8-10
complexes with terminal imido ligands feature bulky ligands
that enforce a coordinatively unsaturated metal center. A low
coordination number at the metal has emerged as an impor-
tant feature, as tetrahedral and trigonal metal centers have
π-symmetry orbitals that are not doubly occupied.19 Thus, even
metals with a high formal d-electron count can form stabilizing
π-interactions with donors such as NR2- by appropriately
manipulating the geometry using the supporting ligands.
The recent successes in isolating late-metal complexes with
terminal imido ligands should not lead one to underestimate
the difficulty in preparing them. A few have been generated
by deprotonation17a or hydrogen atom abstraction16e from
amido complexes, which requires judicious choice of a
reagent that can remove the strongly bonded hydrogen
without destroying the complex. However, most of the late-
metal imido complexes described above arise from the addi-
tion of an organoazide to a low-valent, unsaturated metal
precursor. This reaction is exothermic and exergonic by
virtue of forming N2 as a byproduct. However, the barrier
to breaking the N-N bonds of organoazides is usually high,
and the addition of organoazides to late transition metal
complexes often leads to an organoazide complex in which
the N-N bonds have not been cleaved.17b,20 Understanding the
mechanism and selectivity for N2 extrusion from metal-orga-
noazide complexes is a current research challenge.21 Proulx and
Bergman invoked a four-centered triazametallacyclobutane
There have been several innovations in stabilizing late
transition metal complexes with terminal imido ligands.7 Stone
and co-workers reported in the 1960s and 1970s that several
IrI, RhI, Ru0, and Os0 compounds react with fluoroalkylazides
to give crystalline products, and these were formulated as
fluoroalkylimido complexes on the basis of IR, NMR, and
elemental analysis data.8 However, these putative imido
(5) For recent reviews on catalytic C-H amination reactions, see:
€
(a) Muller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905–2919. (b) Dauban, P.;
Dodd, R. H. Synlett 2003, 11, 1571–1586. (c) Davies, H. M. L.; Long, M. S.
Angew. Chem., Int. Ed. 2005, 44, 3518–3520. (d) Halfen, J. A. Curr. Org.
Chem. 2005, 9, 657–669. (e) Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.;
Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234–1253.
(f) Compain, P.; Toumieux, S. “Catalytic intramolecular C-H aminations: a
powerful tool for the synthesis of various heterocyclic systems,” in Targets in
Heterocyclic Systems; Attanasi, O. A.; Spinelli, D., Eds.; Italian Society of
Chemistry: Rome, 2007. (g) Davies, H. M. L.; Manning, J. R. Nature 2008, 451,
417–424. (h) Von Zezschwitz, P. Nachr. Chem. 2008, 56, 897–901. (i) Collet, F.;
Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061–5074. (j) Fantauzzi, S.;
Caselli, A.; Gallo, E. Dalton Trans. 2009, 5434–5443.
(6) For recent reviews on aziridines and catalytic aziridination reactions,
€
see: (a) Muller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905–2919. (b) Halfen, J. A.
Curr. Org. Chem. 2005, 9, 657–669. (c) Tanner, D. Angew. Chem., Int. Ed.
Engl. 1994, 33, 599–619. (d) Osborn, H. M. I.; Sweeney, J. Tetrahedron:
Asymmetry 1997, 8, 1693–1715. (e) Sweeney, J. B. Chem. Soc. Rev. 2003, 31,
247–258.
(7) Bimetallic group 9-11 complexes featuring bridging imido ligands are
also well-studied, for example see: (a) Sharp, P. R.; Ge, Y.-W. J. Am. Chem.
Soc. 1987, 109, 3796–3797. (b) Ge, Y.-W.; Sharp, P. R. Organometallics 1988, 7,
2234–2236. (c) Ge, Y.-W.; Peng, F.; Sharp, P. R. J. Am. Chem. Soc. 1990, 112,
2632–2640. (d) Ge, Y.-W.; Sharp, P. R. J. Am. Chem. Soc. 1990, 112, 3667–
3668. (e) Ramamoorthy, V.; Sharp, P. R. Inorg. Chem. 1990, 29, 3336–3339.
(f) Ge, Y.-W.; Sharp, P. R. Inorg. Chem. 1992, 31, 379–384. (g) Ge, Y.-W.; Sharp,
P. R. Inorg. Chem. 1993, 32, 94–100. (h) Sharp, P. R.; Yi, Y.; Wu, Z.; Ramamoorthy,
V. Spec. Publ. - R. Soc. Chem. 1993, 131, 198–201. (i) Ge, Y.-W.; Ye, Y.; Sharp,
P. R. J. Am. Chem. Soc. 1994, 116, 8384–8385. (j) Ye, C.; Sharp, P. R. Inorg.
Chem. 1995, 34, 55–59. (k) Li, J. J.; Li, W.; James, A. J.; Holbert, T.; Sharp, T. P.;
Sharp, P. R. Inorg. Chem. 1999, 38, 1563–1572. (l) Sharp, P. R. Comments Inorg.
Chem. 1999, 21, 85–114. (m) Sharp, P. R. Dalton 2000, 2647–2657. (n) Anandhi,
U.; Holbert, T.; Lueng, D.; Sharp, P. R. Inorg. Chem. 2003, 42, 1282–1295.
(o) Singh, A.; Anandhi, U.; Cinellu, M. A.; Sharp, P. R. Dalton Trans. 2008, 2314–
2327. (p) Dobbs, D. A.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 3836–3837.
(q) Dobbs, D. A.; Bergman, R. G. Organometallics 1994, 13, 4594–4605.
(r) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B.
J. Chem. Soc., Dalton Trans. 1996, 3771–3778. (s) Arita, H.; Ishiwata, K.;
Kuwata, S.; Ikariya, T. Organometallics 2008, 27, 493–496. (t) Ishiwata, K.;
Kuwata, S.; Ikariya, T. J. Am. Chem. Soc. 2009, 131, 5001–5009. (u) Nichols,
P. J.; Fallon, G. D.; Murray, K. S.; West, B. O. Inorg. Chem. 1988, 27, 2795–2800.
(v) Ohki, Y.; Takikawa, Y.; Hatanaka, T.; Tatsumi, K. Organometallics 2006, 25,
3111–3113. (w) Takemoto, S.; Ogura, S.-I.; Yo, H.; Hosokoshi, Y.; Kamikawa, K.;
Matsuzaka, H. Inorg. Chem. 2006, 45, 4871–4873. (x) Zart, M. K.; Powell, D.;
Borovik, A. S. Inorg. Chim. Acta 2007, 360, 2397–2402. (y) Lee, S. W.; Trogler,
W. C. Inorg. Chem. 1990, 29, 1099–1102. (z) Oro, L. A.; Ciriano, M. A.; Tejel,
C.; Bordonaba, M.; Graiff, C.; Tiripicchio, A. Chem.;Eur. J. 2004, 10, 708–
715. (aa) Takemoto, S.; Morita, H.; Kamikawa, K.; Matsuzaka, H. Chem.
Commun. 2006, 1328–1330. (bb) Allan, R. E.; Beswick, M. A.; Paver, M. A.;
Raithby, P. R.; Steiner, A.; Wright, D. S. Angew. Chem., Int. Ed. Engl. 1996, 35,
208–209. (cc) Reib, P.; Fenske, D. Z. Anorg. Allg. Chem. 2000, 626, 2245–2247.
(dd) Reiss, P.; Fenske, D. Z. Anorg. Allg. Chem. 2000, 626, 1317–1331. (ee)
Badiei, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren, T. H. J. Am. Chem.
Soc. 2006, 128, 15056–15057. (ff) Badiei, Y. M.; Dinescu, A.; Dai, X.; Palomino,
R. M.; Heinemann, F. W.; Cundari, T. R.; Warren, T. H. Angew. Chem., Int. Ed.
2008, 47, 9961–9964. (gg) Cundari, T. R.; Dinescu, A.; Kazi, A. B. Inorg. Chem.
2008, 47, 10067–10072.
(11) (a) Danopoulos, A. A.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse,
M. B. Polyhedron 1992, 11, 2961–2964. (b) Burrell, A. K.; Steedman, A. J.
Organometallics 1997, 16, 1203–1208.
(12) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 1913–1923.
(13) (a) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322–323. (b) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125,
10782–10783. (c) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem.
Soc. 2006, 128, 5302–5303. (d) Mehn, M. P.; Brown, S. D.; Jenkins, D. M.;
Peters, J. C.; Que, L. Inorg. Chem. 2006, 45, 7417–7427. (e) Lu, C. C.; Saouma,
C. T.; Day, M. W.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 4–5. (f) Scepaniak,
J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M. Angew. Chem., Int. Ed. 2009, 48,
3158–3160.
(14) (a) Verma, A. K.; Nazif, T. N.; Achim, C.; Lee, S. C. J. Am. Chem.
Soc. 2000, 122, 11013. (b) Thomas, C. M.; Mankad, N. P.; Peters, J. C. J. Am.
Chem. Soc. 2006, 128, 4956–4957. (c) Nieto, I.; Ding, F.; Bontchev, R. P.; Wang,
H.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 2716–2717.
(15) Ni, C.; Fettinger, J. C.; Long, G. J.; Brynda, M.; Power, P. P. Chem.
Commun. 2008, 6045–6047.
(16) (a) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002,
124, 11238–11239. (b) Hu, X.; Meyer, K. J. Am. Chem. Soc. 2004, 126, 16322–
16323. (c) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798–
4799. (d) Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.; Theopold,
K. H. Angew. Chem., Int. Ed. 2005, 44, 1508-1510; erratum: 2006, 45, 7870.
(e) Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng, Y.; Wang, H.;
Smith, J. M. J. Am. Chem. Soc. 2007, 129, 2424–2425. (f) Jones, C.; Schulten,
C.; Rose, R. P.; Stasch, A.; Aldridge, S.; Woodul, W. D.; Murray, K. S.;
Moubaraki, B.; Brynda, M.; La Macchia, G.; Gagliardi, L. Angew. Chem., Int.
Ed. 2009, 48, 7406–7410.
(17) (a) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123,
4623–4624. (b) Waterman, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2008, 130,
12628–12629.
(18) Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H.
J. Am. Chem. Soc. 2005, 127, 11248–11249.
(19) Holland, P. L. Acc. Chem. Res. 2008, 41, 905–914.
(8) (a) Ashley-Smith, J.; Green, M.; Mayne, N.; Stone, F. G. A. Chem.
Commun. 1969, 409. (b) McGlinchey, M. J.; Stone, F. G. A. Chem. Commun.
1970, 1265.
(9) Michelman, R. I.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1991, 113, 5100–5102.
(10) (a) Glueck, D. S.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc.
1989, 111, 2719–2721. (b) Glueck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G.
J. Am. Chem. Soc. 1991, 113, 2041–2054.