B. Alcaide et al. / Tetrahedron 68 (2012) 9391e9396
9395
(d) Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405; (e)
Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232; (f) Chem. Rev.; Lipshutz, B.,
Yamamoto, Y., Eds.; ACS: New York, NY, 2008; Vol. 108; (g) Chem. Soc. Rev.;
Hutchings, G. J., Brust, M., Schmidbaur, H., Eds.; RSC: Cambridge, 2008; Vol. 37;
(h) Bongers, N.; Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178; (i) Hashmi, A. S.
K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896; (j) Muzart, J. Tetrahedron
2008, 6, 5815; (k) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; (l) Zhang, L.; Sun, J.;
Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
[method A: 66 mg, 56%; method B: 53 mg, 45%] as a colorless oil;
[
a]
D ꢁ0.01 (c 2.4, CHCl3); 1H NMR (300 MHz, CDCl3, 25 ꢀC):
¼4.60
d
(td, J¼6.9, 2.9 Hz, 1H), 4.11 (t, J¼7.0 Hz, 1H), 4.04 and 3.69 (ddd,
J¼12.4, 6.1, 3.1 Hz, each 1H), 3.98 (dd, J¼6.9, 2.9 Hz, 1H), 3.78 and
3.39 (d, J¼12.4 Hz, each 1H), 2.13 (m, 1H), 1.87 (dddd, J¼10.2, 6.1,
13
0.9 Hz, 1H), 1.35 (s, 3H); C NMR (75 MHz, CDCl3, 25 ꢀC):
d
¼110.6,
79.0, 74.2, 73.1, 68.1, 36.7, 21.5; IR (CHCl3):
n
¼1190 cmꢁ1; HRMS
3.
For the gold-catalyzed access to bicyclic ketalsˇ from terminal alkyne diols, see:
(ES): calcd for C7H13O3 [MþH]þ: 145.0865; found: 145.0868.
(a) Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem. Soc. 2005, 127,
ꢀ
9976; For the platinum-catalyzed synthesis of bicyclic ketals, see: (b) Dieguez-
ꢀ
Vazquez, A.; Tzschucke, C. C.; Lam, W. Y.; Ley, S. V. Angew. Chem., Int. Ed. 2008,
4.3.5. Bicyclic acetal (ꢁ)-7b. From 56 mg (0.25 mmol) of alky-
nyldioxolane (ꢁ)-3b, and after chromatography of the residue using
hexanes/ethyl acetate (1:1) as eluent gave the ketal (ꢁ)-7b [method
47, 209; For the iridium-catalyzed access to bicyclic ketals from alkyne diols,
see: (c) Benedetti, E.; Simonneau, A.; Hours, A.; Amouri, H.; Penoni, A.; Palm-
isano, G.; Malacria, M.; Goddard, J.-P.; Fensterbank, L. Adv. Synth. Catal. 2011,
353, 1908.
A: 37 mg, 80%; method B: 34 mg, 73%] as a colorless oil; [
a
]D ꢁ0.1 (c
4. For the gold-catalyzed access to tricyclic cage-like ketals from diyne-diols and
1
1.4 in CHCl3); H NMR (300 MHz, CDCl3, 25 ꢀC):
d
¼4.46 (m, 1H),
€
€
external nucleophiles, see: (a) Hashmi, A. S. K.; Buhrle, M.; Wolfle, M.; Rudolph,
M.; Wieteck, M.; Rominger, F.; Frey, W. Chem.dEur. J. 2010, 16, 9846; For the
gold-catalyzed access to monocyclic ketals from alkynes and diols, see: (b)
3.85 (m, 3H), 3.77 and 2.92 (d, J¼5.6 Hz, 1H), 3.69 (s, 3H), 2.92 (d,
13
J¼12.8 Hz, 1H), 1.44 (s, 3H); C NMR (75 MHz, CDCl3, 25 ꢀC):
ꢀ
Corma, A.; Ruiz, V. R.; Leyva-Perez, A.; Sabater, M. J. Adv. Synth. Catal. 2010, 352,
1701.
d
¼159.5, 107.0, 75.9, 71.2, 55.6, 54.9, 49.8, 24.1; IR (CHCl3):
5. For
a preliminary communication of part of this work, see: Alcaide, B.;
n
¼1744 cmꢁ1; HRMS (ES): calcd for C8H14NO4 [MþH]þ: 188.0923;
Almendros, P.; Carrascosa, R.; Torres, M. R. Adv. Synth. Catal. 2010, 352, 1277.
found: 188.0924.
ꢀ
6. (a) Alcaide, B.; Almendros, P.; Alonso, J. M.; Fernandez, I. Chem. Commun. 2012,
ꢀ
ꢀ
6604; (b) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Gomez-Campillos, G.; Arno,
M.; Domingo, L. R. ChemPlusChem 2012, 77, 563; (c) Alcaide, B.; Almendros, P.;
Luna, A.; Gomez-Campillos, G.; Torres, M. R. J. Org. Chem. 2012, 77, 3549; (d)
4.4. Procedure for the gold-catalyzed cyclization of alky-
nyldioxolane (L)-1e in a heavy water medium. Preparation of
acetal (L)-[D]-4e
ꢀ
Alcaide, B.; Almendros, P.; Carrascosa, R. Chem.dEur. J. 2011, 17, 4968; (e) Al-
ꢀ
caide, B.; Almendros, P.; Quiros, M. T. Adv. Synth. Catal. 2011, 353, 585; (f) Al-
caide, B.; Almendros, P.; Carrascosa, R.; Martínez del Campo, T. Chem.dEur. J.
2010, 15, 13243.
[AuClPPh3] (0.0065 mmol), AgOTf (0.0065 mmol), p-toluene-
sulfonic acid (0.025 mmol), and tetrabutylammonium iodide
(0.025 mmol) were sequentially added to a stirred solution of the
alkynyldioxolane (ꢁ)-1e (82 mg, 0.26 mmol) in a biphasic water
(0.4 mL)/dichloromethane (0.1 mL) mixture. The resulting mixture
was heated in a sealed tube at 80 ꢀC for 48 h. The reaction mixture
was allowed to cool to room temperature and filtered through
a pack of Celite. The filtrate was extracted with dichloromethane
(3ꢂ2 mL), and the combined extracts were washed twice with
brine. The organic layer was dried (MgSO4) and concentrated under
reduced pressure. Chromatography of the residue eluting with
hexanes/ethyl acetate (10:1) gave 41 mg (57%) of analytically pure
7. Steuer, B.; Lieberknecht, W. A.; Jager, V.; Bullock, J. P.; Hegedus, L. S. Org. Synth.
1996, 74, 1.
8. Hale, K. J.; Manaviazar, S.; George, J. H.; Walters, M. A.; Dalby, S. M. Org. Lett.
2009, 11, 733.
9. After control experiments it was demonstrated that the silver salt alone does
not catalyze the reaction of interest. Thus, it is believed that the role of the
silver salt just consists in the activation of the precatalyst: (a) Gaillard, S.;
ꢀ
Bosson, J.; Ramon, R. S.; Nun, P.; Slawin, A. M. Z.; Nolan, S. P. Chem.dEur. J. 2010,
16, 13729; However, despite proving that the silver activators themselves are
unreactive, there are examples of gold(I)-catalyzed reactions where Ag(I) salts
effected either activity or selectivity: (b) Tarselli, M. A.; Chianese, A. R.; Lee, S. J.;
ꢀ
Gagne, M. R. Angew. Chem., Int. Ed. 2007, 46, 6670; (c) Wang, D.; Cai, R.; Sharma,
S.; Jirak, J.; Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen,
J. L.; Shi, X. J. Am. Chem. Soc. 2012, 134, 9012.
10. The reaction of alkynyldioxolane 1a in aqueous medium under gold catalysis in
the absence of acid additive (PTSA) proceeded to afford the corresponding
acetal 2a in just a slightly lower yield. For a seminal review on gold and pro-
tons, see: (a) Hashmi, A. S. K. Catal. Today 2007, 122, 211; For a selected report
on gold and protons, see: (b) Hashmi, A. S. K.; Schwarz, L.; Rubenbauer, P.;
Blanco, M. C. Adv. Synth. Catal. 2006, 348, 705.
adduct (ꢁ)-[D]-4e as a colorless oil; [
a
]
ꢁ0.4 (c 1.0, CHCl3); 1H
D
NMR (300 MHz, CDCl3, 25 ꢀC):
d
¼7.27 (m, 5H), 5.94 (dd, J¼17.6,
10.8 Hz, 1H), 4.98 (m, 2H), 4.40 (m, 2H), 3.69 (dd, J¼7.0, 5.6 Hz, 1H),
3.61 and 3.54 (d, J¼11.0 Hz, each 1H), 3.51 (s, 1H), 3.02 and 2.92 (d,
J¼14.2 Hz, each 1H), 1.05 and 1.04 (s, each 3H); 13C NMR (75 MHz,
11. (a) Minkler, S. R. K.; Lipshutz, B. H.; Krause, N. Angew. Chem., Int. Ed. 2011, 50,
7820; (b) Wang, Z. J.; Brown, C. J.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. J.
Am. Chem. Soc. 2011, 133, 7358; (c) Poonoth, M.; Krause, N. J. Org. Chem. 2011, 76,
1934; (d) Yang, C. Y.; Lin, M. S.; Liao, H. H.; Liu, R. S. Chem.dEur. J. 2010, 16, 2696;
(e) Winter, C.; Krause, N. Green Chem. 2009, 11, 1309; (f) Ye, D.; Zhang, X.; Zhou,
Y.; Zhang, D.; Zhang, L.; Wang, H.; Jiang, H.; Liu, H. Adv. Synth. Catal. 2009, 351,
2770; (g) Marion, N.; Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448;
(h) Oh, C. H.; Karmakar, S. J. Org. Chem. 2009, 74, 370; (i) Cuenca, A. B.; Mancha,
CDCl3, 25 ꢀC):
d
¼144.5, 130.4, 128.4, 127.0, 112.6, 84.6, 77.5, 75.9,
73.4, 66.7, 40.1, 39.1, 25.0, 24.0; IR (CHCl3):
n
¼1184 cmꢁ1; HRMS
(ES): calcd for C17H22 DO3 [MþH]þ: 276.1709; found: 276.1705.
Acknowledgements
ꢀ
G.; Asensio, G.; Medio-Simon, M. Chem.dEur. J. 2008, 14, 1518; (j) Yang, C. Y.;
Lin, G. Y.; Liao, H. Y.; Datta, S.; Liu, R. S. J. Org. Chem. 2008, 73, 4907; (k) Zhang,
C.; Cui, D. M.; Yao, L. Y.; Wang, B. S.; Hu, Y. Z.; Hayashi, T. J. Org. Chem. 2008, 73,
7811; (l) Tang, J. M.; Liu, T. A.; Liu, Rˇ . S. J. Org. Chem. 2008, 73, 8479; (m) Genin,
E.; Leseurre, L.; Toullec, Y. P.; Genet, J.-P.; Michelet, V. Synlett 2007, 1780; (n)
Jung, H. H.; Floreancig, P. E. J. Org. Chem. 2007, 72, 7359; (o) Yan, B.; Liu, Y. Org.
Lett. 2007, 9, 4323; (p) Zhou, C. Y.; Chan, P. W. H.; Che, C. M. Org. Lett. 2006, 8,
325; (q) Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc.
2003, 125, 11925; (r) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584; (s)
Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41,
4563.
Support for this work by the DGI-MICINN (Project CTQ2009-
ꢀ
09318) and Comunidad Autonoma de Madrid (Project S2009/
PPQ-1752) is gratefully acknowledged. R.C. thanks MEC for a pre-
doctoral grant.
Supplementary data
Supplementary data associated with this article can be found in
12. The appealing properties of organic reactions in aqueous media include their
synthetic advantages as well as unique reactivity and selectivity that are not
often attained under dry conditions, making then profitable in many cases.
Thus, water-based organic reactions have been gaining popularity in synthetic
chemistry, particularly for its abundant availability, and for its inexpensiveness.
For selected reviews on organic reactions in aqueous media, see: (a) Simon, M.
O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415; (b) Butler, R. N.; Coyne, A. G. Chem. Rev.
2010, 110, 6302; (c) Lombardo, M.; Trombini, C. Curr. Opin. Drug Disc. 2010, 13,
717; (d) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725; (e) Organic Reactions
References and notes
1. For recent reviews and monographs, see: (a) Dunn, P. J. Chem. Soc. Rev. 2012, 41,
1452; (b) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437; (c) Ranu, B. C.; Saha, A.;
Dey, R. Curr. Opin. Drug Disc. 2010, 13, 658; (d) Uozumi, Y. Synlett 2010, 1988; (e)
Beach, E. S.; Cui, Z.; Anastas, P. T. Energy Environ. Sci. 2009, 2, 1038; (f) Green
€
in Water: Principles, Strategies and Applications; Linstrom, U. M., Ed.; Blackwell:
Oxford, 2007; (f) Li, C. J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68; (g) Pirrung, M. C.
Chem.dEur. J. 2006, 12, 1312; (h) Li, C. J. Chem. Rev. 2005, 105, 3095;
ꢀ
Catalysis; Anastas, P. T., Ed.; Wiley-VCH: Weinheim, 2009; (g) Horvath, I. T.;
Anastas, P. T. Chem. Rev. 2007, 107, 2169.
€
(i) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751; (j) Manabe, K.; Kobayashi, S.
2. For selected reviews on gold catalysis, see: (a) Rudolph, M.; Hashmi, A. S. K.
Chem.dEur. J. 2002, 8, 4095; (k) Ribe, S.; Wipf, P. Chem. Commun. 2001, 299;
(l) Li, C. J.; Chan, T. H. Tetrahedron 1999, 55, 11149; (m) Paquette, L. A. In Green
ꢀ
Chem. Soc. Rev. 2012, 41, 2448; (b) Corma, A.; Leyva-Perez, A.; Sabater, M. J.
Chem. Rev. 2011, 111, 1657; (c) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994;