Journal of the American Chemical Society
Page 4 of 5
(9) Isaka, M.; Palasarn, S.; Auncharoen, P.; Komwijit, S.; Jones, E.
B. G. Tetrahedron Lett. 2009, 50, 284–287.
AUTHOR INFORMATION
1
2
3
4
5
6
7
8
Corresponding Author
(10) (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178–
180; (b) Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 19,
2263–2266. See also: (c) Mal, D.; Pahari, P. Chem. Rev. 2007, 107,
1892–1918 and references therein.
(11) Acremoxanthone A numbering is used. See ref. 9.
(12) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem.
Soc. 2016, 138, 5515–5518.
(13) For selected examples see: (a) Taylor, E. C.; Chiang, C.-S.,
McKillop, A. Tetrahedron Lett. 1977, 18, 1827–1830; (b) Hossini, M.
S.; McCulloug, K. J.; McKay, R.; Proctor, G. R. Tetrahedron Lett.
1986, 27, 3783–3786; (c) Justik, M. W.; Koser, G. F. Molecules 2005,
10, 217–225.
(14) (a) Pandey, G.; Krishna, A.; Girija, K.; Karthikeyan, M. Tet-
rahedron Lett. 1993, 34, 6631–6634; (b) Pandey, G.; Karthikeyan,
M.; Murugan, A. J. Org. Chem. 1998, 63, 2867–2872.
(15) Benzyl bromide 10 was prepared in one step from the corre-
sponding commercially available alcohol. See Supporting Information
for details.
(16) Performing the alkylations in two separate steps did not offer
any advantages and led to a decrease in the overall yield of 11 from 8.
(17) Isomers 12 and 13 were distinguished by NOE experiments.
(18) Variations in the work-up conditions did not increase the con-
tent of 12 in the product mixtures.
(19) (a) Kita, Y.; Yakura, T.; Tohma, H.; Kikuchi, K.; Tamura, Y.
Tetrahedron Lett. 1989, 30, 1119–1120; (b) Kita, Y.; Okunaka, R.;
Kondo, M.; Tohma, H.; Inagaki, M.; Hatanaka, K. J. Chem. Soc.,
Chem. Commun. 1992, 429–430; (c) Kita, Y.; Tohma, H.; Hatanaka,
K.; Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. J. Am.
Chem. Soc. 1994, 116, 3684–3691; (d) Arisawa, M.; Ramesh, N. G.;
Nakajima, M.; Tohma, H.; Kita, Y. J. Org. Chem. 2001, 66, 59–65.
(20) Application of 2,2,2-trifluoroethanol was less efficient.
(21) For examples of application of related intermediates in the
synthesis of colchicine see: a) Schreiber, J.; Leimgruber, W.; Pesaro,
M.; Schudel, P.; Eschenmoser, A. Angew. Chem. 1959, 71, 637-656;
b) van Tamelen, E. E.; Spencer, T. A.; Allen, D. S.; Orvis, R. L. J.
Am. Chem. Soc. 1959, 81, 6341–6342.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Funding from the School of Physical Sciences at the Uni-
versity of California, Irvine, Chao Family Comprehensive
Cancer Center, and Allergan (graduate fellowship to
S.D.H.) is gratefully acknowledged. S.V.P. is a Hellman
fellow. We thank Dr. Joseph Ziller and Michael Wojnar for
X-ray crystallographic analysis. We also thank Professors
Larry Overman, Chris Vanderwal, and Scott Rychnovsky
for providing routine access to their instrumentation and
helpful discussions.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) (a) Milat, M.-L.; Prangé, T.; Ducrot, P.-H.; Tabet, J.-C.; Ein-
horn, J.; Blein, J.-P.; Lallemand, J.-Y. J. Am. Chem. Soc. 1992, 114,
1478–1479; (b) Jalal, M. A. F.; Hossain, M. B.; Robeson, D. J.; van
der Helm, D. J. Am. Chem. Soc. 1992, 114, 5967–5971; (c) Arnone,
A.; Nasini, G.; Merlini, L.; Ragg, E.; Assante, G. J. Chem. Soc., Per-
kin Trans. 1 1993, 145–151; (d) Prangé, T.; Neuman, A.; Milat, M.-
L.; Blein, J.-P. Acta Cryst. 1995, B51, 308–314; (e) Ducrot, P.-H.;
Milat, M.-L.; Blein, J.-P.; Lallemand, J.-Y. J. Chem. Soc., Chem.
Commun. 1994, 2215–2216; (f) Ducrot, P.-H.; Lallemand, J.-Y.;
Milat, M.-L.; Blein, J.-P. Tetrahedron Lett. 1994, 35, 8797–8800; (g)
Ducrot, P.-H.; Einhorn, J.; Kerhoas, L.; Lallemand, J.-Y.; Milat, M.-
L.; Blein, J.-P.; Neuman, A.; Prangé, T. Tetrahedron Lett. 1996, 37,
3121–3124; (h) Ding, G.; Maume, G.; Milat, M.-L.; Humbert, C.;
Blein, J.-P.; Maume, B. F. Cell Biol. Int. 1996, 20, 523–530; (i) Pran-
gé, T.; Neuman, A.; Milat, M.-L.; Blein, J.-P. J. Chem. Soc., Perkin
Trans. 2 1997, 1819–1825; (j) Goudet, C.; Véry, A.-A.; Milat, M.-L.;
Ildefonse, M.; Thibaud, J.-B.; Sentenac, H.; Blein, J.-P. Plant J. 1998,
14, 359–364; (k) Goudet, C.; Benitah, J.-P.; Milat, M.-L.; Sentenac,
H.; Thibaud, J.-B. Biophys. J. 1999, 77, 3052–3059; (l) Goudet, C.;
Milat, M.-L.; Sentenac, H.; Thibaud, J.-B. MPMI 2000, 13, 203–209.
(2) (a) Tabata, N.; Suzumura, Y.; Tomoda, H.; Masuma, R.;
Haneda, K.; Kishi, M.; Iwai, Y.; Ōmura, S. J. Antibiot. 1992, 46, 749–
755; (b) Matsuzaki, K.; Tabata, N.; Tomoda, H.; Iwai, Y.; Tanaka, H.;
Ōmura, S. Tetrahedron Lett. 1993, 34, 8251–8254; (c) Tabata, N.;
Tomoda, H.; Matsuzaki, K.; Ōmura, S. J. Am. Chem. Soc. 1993, 115,
8558–8564; (d) Tabata, N.; Tomoda, H.; Iwai, Y.; Ōmura, S. J. Anti-
biot. 1995, 49, 267–271. See also: (e) Chen, G.-D.; Chen, Y.; Gao, H.;
Shen, L.-Q.; Wu, Y.; Li, X.-X.; Li, Y.; Guo, L.-D.; Cen, Y.-Z.; Yao,
X.-S. J. Nat. Prod. 2013, 76, 702–709.
(22) Formation of 19 was accompanied by the corresponding α-
1
(trifluoroacetoxy)ketone: H NMR analysis of the crude product mix-
ture indicated ca. 2:1 ratio of 19 and the trifluoroacetate, respectively.
(23) Cyanophthalide 16 was prepared in two steps from commer-
cially available 1-bromo-3-methoxy-5-methylbenzene. See Support-
ing Information for details.
(24) (a) Hill, B.; Rodrigo, R. Org. Lett. 2005, 7, 5223–5225; (b)
Wright, P. M.; Myers, A. G. Tetrahedron 2011, 67, 9853–9869.
(25) Ge, Y.; Isoe, S. Chem. Lett. 1992, 139–140.
(26) (a) Sheffy, F. K.; Stille, J. K. J. Am. Chem. Soc. 1983, 105,
7173–7175; (b) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771–1780
and references therein.
(27) Arylstannane 20 was prepared in two steps from commercially
available 2,5-dimethoxybenzoic acid. See Supporting Information for
details.
(28) For an example of the use of a preformed arylpalladium(II)
complex in the Stille cross-coupling in the context of synthesis see:
Zajac, M. A.; Vedejs, E. Org. Lett. 2004, 6, 237–240.
(29) The stereochemical outcome of the solvolysis can be rational-
ized following the logic found in the discussion of the reduction en
route to alcohol 24.
(30) For examples of relevant cyclizations see: Hintermann, L.;
Masuo, R.; Suzuki, K. Org. Lett. 2008, 10, 4859–4862.
(31) In this sequence, the bromination/deprotection step accounts
for the main loss of the material.
(3) (a) He, H.; Bigelis, R.; Solum, E. H.; Greenstein, M.; Carter, G.
T. J. Antibiot. 2003, 56, 923–9330; (b) Intaraudom, C.; Bunbamrung,
N.; Dramae, A.; Boonyuen, N.; Komwijit, S.; Rachtawee, P.; Pit-
tayakhajonwut, P. Tetrahedron Lett. 2016, 72, 1415–1421.
(4) Wu, B.; Wiese, J.; Wenzel-Storjohann, A.; Malien, S.;
Schmaljohann, R.; Imhoff, J. F. Chem. Eur. J. 2016, 22, 7452–7462.
(5) For proposed biosynthesis see refs. 1c and 2c.
(6) For relevant discussions see refs. 1b and 1d.
(7) (a) Duffault, J.-M.; Tellier, F. Synth. Commun. 1998, 28, 2467–
2481; (b) Kramer, C. S.; Nieger, M.; Bräse, S. Eur. J. Org. Chem.
2014, 2150–2159.
(8) Hirano, Y.; Tokudome, K.; Takikawa, H.; Suzuki, K. Synlett
2017, 28, 214–220.
4
ACS Paragon Plus Environment