D. S. Werner et al. / Tetrahedron Letters 51 (2010) 3899–3901
3901
exploration based on convergent routes II and III and the biological
significance of this chemotype will be discussed in future
communications.
O
N
O
N
17
b
HN
H2N
NH
HN
H2N
NH2
2HCl
N
N
a
O
Acknowledgments
22
21
We thank Professor Victor Snieckus at Queen’s University, ON
for consultation; Ms. Viorica M. Lazarescu and Dr. Minghui Wang
for their analytical support.
O
Y
HN
d
e
N
14
15
N
N
H2N
References and notes
1. (a) Crew, A. P.; Mulvihill, M. J.; Werner, D. S. WO2006/012422.; (b) Arnold, L.
D.; Cesario, C.; Coate, H.; Crew, A. P.; Dong, H. -Q.; Foreman, K.; Honda, A.;
Laufer, R.; Li, A. -H.; Mulvihill, K. M.; Mulvihill, M. J.; Nigro, A.; Panicker, B.;
Steinig, A. G.; Sun, Y.; Weng, Q.; Werner, D. S.; Wyle, M. J.; Zhang, T. WO2005/
097800.; (c) Chen, X.; Coate, H.; Crew, A. P.; Dong, H. -Q.; Honda, A.; Mulvihill,
M. J.; Tavares, P. A.; Wang, J.; Werner, D. S.; Mulvihill, K. M.; Siu, K. W.;
Panicker, B.; Bharadwaj, A.; Arnold, L. D.; Jin, M.; Volk, B.; Weng, Q.; Beard, J. D.
WO2007/061737.
23 (Y = H)
24 (Y = I)
c
Scheme 5. Convergent route III. Reagents and conditions: (a) 1 M NaHCO3, THF/
MeCN (1:1), rt, 83%; (b) POCl3, 1,2-dichloroethane, reflux, 90%; (c) NIS, DMF, rt, 75%;
(d) t-butylnitrite, 5% DMF/THF (1:5), rt, 91%; (e) 1,2,4-triazole, POCl3, pyridine, rt,
then 1 M NH3 in i-PrOH, 0 °C to rt, 82%.
2. (a) Knutsen, L. J. S.; Judkins, B. D.; Mitchell, W. L.; Newton, R. F.; Scopes, D. I. C. J.
Chem. Soc., Perkin Trans. 1 1984, 229; (b) Knutsen, L. J. S.; Judkins, B. D.; Newton,
R. F.; Scopes, D. I. C.; Klinkert, G. J. Chem. Soc., Perkin Trans. 1 1985, 621; (c)
Heim-Riether, A.; Healy, J. J. Org. Chem. 2005, 70, 7331; (d) Charles, I.; Latham,
D. W. S.; Hartley, D.; Oxford, A. W.; Scopes, D. I. C. J. Chem. Soc., Perkin Trans. 1
1980, 1139.
3. (a) Mulvihill, M. J.; Ji, Q.-S.; Werner, D.; Beck, P.; Cesario, C.; Cooke, A.; Cox, M.;
Crew, A.; Dong, H.; Feng, L.; Foreman, K. W.; Mak, G.; Nigro, A.; O’Connor, M.;
Saroglou, L.; Stolz, K. M.; Sujka, I.; Volk, B.; Weng, Q.; Wilkes, R. Bioorg. Med.
Chem. Lett. 2007, 17, 1091; (b) Mulvihill, M. J.; Ji, Q.-S.; Coate, H. R.; Cooke, A.;
Dong, H.; Feng, L.; Foreman, K.; Rosenfeld-Franklin, M.; Honda, A.; Mak, G.;
Mulvihill, K. M.; Nigro, A. I.; O’Connor, M.; Pirrit, C.; Steinig, A. G.; Siu, K.; Stolz,
K. M.; Sun, Y.; Tavares, P. A. R.; Yao, Y.; Gibson, N. W. Bioorg. Med. Chem. 2008,
16, 1359; (c) Mulvihill, M. J.; Cooke, A.; Rosenfeld-Franklin, M.; Buck, E.;
Foreman, K.; Landfair, D.; O’Connor, M.; Pirritt, C.; Sun, Y.; Yao, Y.; Arnold, L. D.;
Gibson, N. W.; Ji, Q.-S. Future Med. Chem. 2009, 1, 1153.
20. The 4-MeO group of 20 was readily displaced by ammonia at rt
using 7 N NH3 in MeOH, providing the intermediate 15. The NMR
spectroscopic data of compound 15 were identical to those ob-
tained when 15 was prepared according to route I (Scheme 3). Of
note, there were no solubility issues in this route as was the case
in route I.
Our third convergent synthetic route is shown in Scheme 5.
Condensation of the inexpensive reagents ethyl bromopyruvate,
dibenzylamine, and aminoguanidine bicarbonate, followed by
debenzylation via hydrogenation over Pd–C afforded the known
3-amino-6-(aminomethyl)-1,2,4-triazin-5(4H)-one dihydrochlo-
ride compound 21.12a Selective amidation with the active ester 17
followed by subsequent POCl3 cyclization smoothly afforded com-
pound 23.12b In comparison with the iodination of 13 and 19, the
iodination of 23 was facile using 1.2 equiv of NIS at rt and the iso-
lated yield was improved to 75%. The overall improvement in the
reaction is presumed to be due to the electron-donating effect of
the 2-NH2 group activating the 5-position. Removal of the 2-NH2
group in the imidazotriazinone 24 was the key step in our synthetic
design and was realized using 5.0 equiv t-butyl nitrite in DMF/THF
(1:5, v/v) at rt., affording the desired product 14 in 91% yield.13 The
NMR spectroscopic data of 14 and the subsequent ammonolysis
product 15 were identical to those obtained when 15 was prepared
according to route I (Scheme 3).
4. Compound 2 was prepared in two steps, Strecker reaction of 3-BnO-C6H4CHO
and the treatment of the resulting
a-amino-(3-benzyloxy)phenylacetonitrile
with methanolic HCl (a) Matier, W. L.; Owens, D. A.; Comer, W. T. J. Med. Chem.
1973, 16, 901; (b) Rao, A. V. R.; Reddy, K. L.; Rao, A. S.; Vittal, T. V. S. K.; Reddy,
M. M.; Pathi, P. L. Tetrahedron Lett. 1996, 37, 3023.
5. Draber, W.; Timmler, H.; Dickore, K.; Donner, W. Liebigs Ann. Chem. 1976, 2206.
6. Reitz, A. B.; Goodman, M. G.; Pope, B. L.; Argentieri, D. C.; Bell, S. C.; Burr, L. E.;
Chourmouzis, E.; Come, J.; Goodman, J. H.; Klaubert, D. H.; Maryanoff, B. E.;
McDonnell, M. E.; Rampulla, M. S.; Schott, M. R.; Chen, R. J. Med. Chem. 1994, 37,
3561.
7. Compound 1: a white solid, mp 163–165 °C; 1H NMR (DMSO-d6, 400 MHz): d
(ppm) 7.89 (s, 1H), 7.46–7.51 (m, 2H), 7.38–7.44 (m, 3H), 7.34 (m, 1H), 7.27 (dd,
J = 2.3, 1.5 Hz, 1H), 7.23 (m, 1H), 7.08 (ddd, J = 8.3, 2.5, 0.8 Hz, 1H), 5.17 (s, 2H),
4.04 (quin, J = 8.3 Hz, 1H), 2.42–2.48 (m, 2H), 2.30–2.41 (m, 2H), 2.08 (m, 1H),
1.93 (m, 1H); 13C NMR (DMSO-d6, 100 MHz): d (ppm) 158.7, 155.9, 149.1,
145.4, 137.0, 135.7, 133.7, 130.0, 128.4, 127.8, 127.6, 121.2, 115.0, 114.5, 109.9,
69.3, 30.4, 26.7, 18.3; HRMS (ES) calcd for C22H22N5O [MH+]: 372.1824, found:
372.1819.
8. Adam, F. M.; Burton, A. J.; Cardwell, K. S.; Cox, R. A.; Henson, R. A.; Mills, K.;
Prodger, J. C.; Schilling, M. B.; Tape, D. T. Tetrahedron Lett. 2003, 44, 5657.
9. (a) Chakrabarty, M.; Sarkar, S.; Harigaya, Y. Synthesis 2003, 2292; (b) Lipinski, C.
A.; Stam, J. G.; Pereira, J. N.; Ackerman, N. R.; Hess, H.-J. J. Med. Chem. 1980, 23,
1026.
10. Williams, T. M.; Crumbie, R.; Mosher, H. S. J. Org. Chem. 1985, 50, 91.
11. Abushanab, E.; Bindra, A. P.; Goodman, L.; Peterson, H., Jr. J. Org. Chem. 1973, 38,
2049.
12. (a) Mitchell, W. L.; Hill, M. L.; Newton, R. F.; Ravenscroft, P.; Scopes, D. I. C. J.
Heterocycl. Chem. 1984, 21, 697; (b) Bhattacharya, B. K.; Rao, T. S.; Lewis, A. F.;
Revankar, G. R.; Sanghvi, Y. S.; Robins, R. K. J. Heterocycl. Chem. 1993, 30, 1341.
13. Nagahara, K.; Anderson, J. D.; Kini, G. D.; Dalley, N. K.; Larson, S. B.; Smee, D. F.;
Jin, A.; Sharma, B. S.; Jolley, W. B.; Robins, R. K.; Cottam, H. B. J. Med. Chem.
1990, 33, 407.
In conclusion, multiple synthetic routes to the novel heterobicy-
clic scaffold 5,7-disubstituted imidazo[5,1-f][1,2,4]triazin-4-amine
have been achieved. The linear route, while limited in scope and
overall yield, allowed the preparation of an initial proof-of-concept
compound 1, while the three subsequent convergent routes allowed
for the rapid and broad exploration of the C-5 and C-7 positions. Of
the convergent routes, route III proved the most robust and practical
for large-scale synthesis although all of these routes were success-
fully and extensively used in the medicinal chemistry exploration
around this novel core. Based on these chemistries, several oncol-
ogy-focused novel kinase inhibitors have emerged that are now pro-
gressing through the development/clinical stage. Further chemistry