pubs.acs.org/joc
in the continuous anionic copolymerization of ε-caprolactam
An Electron-Rich Proazaphosphatrane for
Isocyanate Trimerization to Isocyanurates
to nylon-6,7 and triallyl isocyanurates are useful in the prepa-
ration of flame-retardant laminating materials for electrical
devices.1
Steven M. Raders and John G. Verkade*
The commercial importance of isocyanurates has generated
numerous efforts aimed at the development of more effective
methods for cyclotrimerizing isocyanates.8 Problems with some
of the known cyclotrimerization procedures include low cata-
lyst activity, diazetidine byproduct formation, lengthy reaction
times, product separation difficulties, and the use of toxic
solvents.1,9 Examples of Lewis base cyclotrimerization catalysts
that have been reported include phosphines,3,10 N-heterocyclic
carbenes,1 calcium carbene complexes,11 amines,12 NO,13 fluo-
ride anions,14 and alkoxyalkenes.15 Metal-containing cyclotri-
merization catalysts include organotin16 and zirconium17 com-
pounds, organozinc halides and alkoxides,18 copper and nickel
halides,13 and palladium(0) systems.19
Department of Chemistry, Iowa State University,
Ames, Iowa 50011
Received November 1, 2009
Proazaphosphatranes such as 1-5 are strong nonionic
bases owing to transannulation of the basal nitrogen to the
phosphorus atom upon protonation of the latter, and to the
donation of electron density from all three of the P-N
nitrogens.20 In terms of low catalyst loading, fast reaction
times, ease of product purification, and optional use of a
nontoxic solvent such as toluene, proazaphosphatranes have
thus far been shown to be the most effective catalysts so far
reported for the cyclotrimerization of isocyanates.10
A facile synthesis of the new electron-rich, sterically hindered
proazaphosphatrane shown above is described herein. This
proazaphosphatrane catalyzes the cyclotrimerization of a
wide variety of isocyanates to isocyanurates under mild
conditions with unprecedentedly fast reaction times, giving
moderate to high product yields. It is also shown that this
proazaphosphatrane can be recycled up to 5 times.
Isocyanurates (perhydro-1,3,5-triazine-2,4,6-triones), typi-
cally produced by cyclotrimerizing isocyanates, enhance the
physical properties of polyurethanes and coating materials.1
Incorporation of isocyanurates into the framework of polyur-
ethanes enhances their flame retardation and filming charac-
teristics, and commercial products containing polymeric iso-
cyanurates possess increased thermal and chemical resistance.2
Isocyanurates are also employed in the preparation of copoly-
mer resins which require water-resistance, transparency, and
impact resistance,3 and a novel optically active isocyanurate has
been used for chiral discrimination of enantiomeric amino acid
units.4 Selective bonding of chloride anions via a p-nitrophenyl-
sulfonamide group connected to an isocyanurate by an ethy-
lene moiety has been reported,5 and low-toxicity drug delivery
has been achieved by tethering drug molecules to an isocyanu-
rate backbone via an amide linker for facilitating subsequent
drug release.6 Triaryl isocyanurates are employed as activators
Previously, we showed that with no attempt at temperature
control of the reaction, proazaphosphatrane 1 at 0.3 mol %
(7) (a) Bukac, Z.; Sebenda, J. Chem. Prum. 1985, 35, 361. (b) Horsky, J.;
Kubanek, U.; Marick, J.; Kralicek, J. Chem. Prum. 1982, 32, 599.
(8) For additional information regarding isocyanate trimerization, see
the Supporting Information.
(9) (a) Wegener, G.; Brandt, M.; Duda, L.; Hofmann, J.; Klesczewski, B.;
Koch, D.; Kumpf, R.-J.; Orzesek, H.; Pirkl, H.-G.; Six, C.; Steinlein, C.;
Weisbeck, M. Appl. Catal. A 2001, 221, 303. (b) Silva, A. L.; Bordado, J. C.
Catal. Rev. 2004, 46, 31.
(10) (a) Tang, J.; Verkade, J. G. Angew. Chem., Int. Ed. Engl. 1993, 32,
896. (b) Liu, X.; Bai, Y.; Verkade, J. G. J. Organomet. Chem. 1999, 582, 16.
(11) Orzechowski, L.; Harder, S. Organometallics 2007, 26, 2144.
(12) (a) Tagachi, Y.; Shibaya, I.; Yasumoto, Y.; Ynoemoto, K. Bull.
Chem. Soc. Jpn. 1990, 63, 3486. (b) Moghaddam, F. M.; Dekamin, M. G.;
Koozehgari, G. R. Lett. Org. Chem. 2005, 2, 734.
(13) Villa, J. F.; Powell, H. B. Synth. React. Met.-Org. Chem. 1976, 6, 59.
(14) Nambu, Y.; Endo, T. J. Org. Chem. 1993, 58, 1932.
(15) Mizuya, J.; Yokozawa, T.; Endo, T. J. Polym. Sci., Polym. Chem.
1991, 29, 1544.
(1) Duong, H. A.; Cross, M. J.; Louie, J. Org. Lett. 2004, 6, 4679.
(2) (a) Wirpsza, Z. Polyurethanes: Chemistry, Technology and Application;
Ellis Horwood: London, UK, 1993. (b) Zitinkina, A. K.; Sibanova, N. A.;
Tarakanov, O. G. Russ. Chem. Rev. 1985, 54, 1866. (c) Nawata, T.; Kresta,
J. E.; Frisch, K. C. J. Cell. Plast. 1975, 267. (d) Nicholas, L.; Gmitter, G. R.
J. Cell. Plast. 1965, 85.
(3) Tang, J.; Mohan, T.; Verkade, J. G. J. Org. Chem. 1994, 59, 4931.
(4) Sugimoto, H.; Yamane, Y.; Inoue, S. Tetrahedron: Asymmetry 2000,
11, 2067.
(16) (a) Bloodworth, A. J.; Davies, A. G. J. Chem. Soc. 1965, 6858.
(b) Foley, S. R.; Yap, G. P. A.; Richeson, D. S. Organometallics 1999, 18, 4700.
(17) Li, Y.; Matsumura, H.; Yamanaka, M.; Takahashi, T. Tetrahedron
2004, 60, 1393.
(18) Noltes, J. G.; Boersma, J. J. Organomet. Chem. 1967, 7, 6.
(19) Paul, F.; Moulin, S.; Piechaczyk, O.; Le Floch, P.; Osborn, J. A.
J. Am. Chem. Soc. 2007, 129, 7294.
(20) (a) Verkade, J. G. New Aspects of Phosphorus Chemistry II, Majoral,
J. P., Ed., In Top. Curr. Chem. 2003, 223, 1-44. (b) Verkade, J. G.; Kisanga, P.
Tetrahedron 2003, 59, 7819–7858. (c) Verkade, J. G.; Kisanga, P. B. Aldrichim.
Acta 2004, 37, 3–14.
(5) Hettche, F.; Hoffman, R. W. New J. Chem. 2003, 27, 172.
(6) Murray, A. P.; Miller, M. J. J. Org. Chem. 2003, 68, 191.
5308 J. Org. Chem. 2010, 75, 5308–5311
Published on Web 07/08/2010
DOI: 10.1021/jo9023396
r
2010 American Chemical Society