Terent’ev et al.
JOCArticle
As a result of their availability and high efficiency, organic
peroxides play a leading part as radical polymerization ini-
tiators in the industrial synthesis of such polymeric materials
as polyacrylates, polystyrene, styrene-containing rubbers,
and high-pressure polyethylene and are also used as cross-
linking agents.
The design of peroxide-based explosives is of particular
interest. Triacetone triperoxide is one of the most sensitive
known explosives with an explosive power similar to that of
trinitrotoluene.7 Peroxide derivatives of other lower ketones
and aldehydes can also be of interest as high-energy substances.
The present study is a continuation of our research on the
peroxidation of β-dicarbonyl compounds.8 It was found for
the first time that transition metals (Cu, Fe, Mn, and Co)
catalyze the selective peroxidation of β-dicarbonyl compounds
at the R position by tert-butyl hydroperoxide.
catalyzed by metal salts and their complexes: copper,10 cobalt,11
and iron,12 including Gif13 and metalloporphyrin14 catalysis.
Peroxides were synthesized in high yields by the peroxidation
of amines, amides, and lactams catalyzed by ruthenium salts.15
Hydroxylation reactions of β-dicarbonyl compounds at
the R position, which are related to the peroxidation dis-
covered in the present study, were extensively studied in the
past two decades. Generally, the oxidation was carried out
with the use of peracids,16 dimethyldioxirane,17 hydrogen
peroxide,18 or oxygen.19 In the studies with the use of oxygen,
the formation of peroxide compounds was observed in the
following cases: the oxidation of ring-containing β-diketones
by singlet oxygen,19a reactions with the use of the CeCl3/O2
system,19b and reactions of nitrogen-containing heterocyc-
lic compounds bearing a β-dicarbonyl fragment with the
Mn(OAc)2/O2 system19c
The transition metal (Cu, Mn, Co)/hydroperoxide system
was used for the first time by Kharasch in the synthesis of
peroxides from alkenes, ketones, and tertiary amines more
than six decades ago.9 Since that time, the research on and
application of this peroxidation method have been documen-
ted in numerous publications. The formation of peroxides
has been observed in various reactions of hydroperoxides
Results and Discussion
In the present study, we found that the transition metal
(Cu, Co, Mn, Fe)/tert-butyl hydroperoxide system can be
used for the peroxidation of β-dicarbonyl compounds at the
R position. The peroxidation of β-dicarbonyl compounds
occurs with high selectivity, does not require the use of a sub-
stantial excess of the reactants, and is easily scaled. R-Substituted
β-keto esters 1a-f, β-diketones 2a,b,d,e,g,h, and β-diesters
3a,e,f,h were used as the starting compounds for the synthesis
of target peroxides 4a-f, 5a,b,d,e,g,h, and 6a,e,f,h (Scheme 1).
In the context of this peroxidation reaction, it should be
noted that in the past decade β-dicarbonyl compounds have
found use in oxidative coupling with alkanes, alkenes, amines,
(4) (a) Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A.;
Stanford, D.; Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.;
ꢁ
Hall, C.; Rimmer, K.; Lozanom, S.; Jesus, M.; Gargallo, D.; Ward, S. A.;
O’Neill, P. M. J. Med. Chem. 2008, 51, 2170–2177. (b) Amewu, R.; Stachulski,
A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.; Davies, J.; Labat, G.; Vivas, L.;
O’Neill, P. M. Org. Biomol. Chem. 2006, 4, 4431–4436. (c) Dong, Y.; Tang, Y.;
Chollet, J.; Matile, H.; Wittlin, S.; Charman, S. A.; Charman, W. N.; Tomas,
J. S.; Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai, S.; Alexander, S. A.;
Wang, X.; Padmanilayam, M.; Cheruku, S. R.; Brun, R.; Vennerstrom, J. L.
Bioorg. Med. Chem. 2006, 14, 6368–6382. (d) Singh, C.; Malik, H.; Puri, S. K.
Bioorg. Med. Chem. Lett. 2004, 14, 459–462.
(5) (a) Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. Mini-Rev.
Med. Chem. 2007, 7, 571–589. (b) Jung, M.; Kim, H.; Lee, K.; Park, M. Mini-
Rev. Med. Chem. 2003, 3, 159–165. (c) Kim, J.; Park, E. J. Curr. Med. Chem.
Anticancer Agents 2002, 2, 485–537. (d) Dembitsky, V. M. Eur. J. Med.
Chem. 2008, 43, 223–251. (e) Dembitsky, V. M.; Gloriozova, T. A.; Poroikov,
(11) (a) Treibs, W.; Pellmann, G. Chem. Ber. 1954, 87, 1201–1205.
(b) Saussine, L.; Brazi, E.; Robine, A.; Mimoun, H.; Fischer, J.; Weiss, R.
J. Am. Chem. Soc. 1985, 107, 3534–3540.
(12) (a) Leising, R. A.; Norman, R. E.; Que, L., Jr. Inorg. Chem. 1990, 29,
2553–2555. (b) Leising, R. A.; Zang, Y.; Que, L., Jr. J. Am. Chem. Soc. 1991,
113, 8555–8557. (c) Kojima, T.; Leising, R. A.; Yan, S.; Que, L., Jr. J. Am.
Chem. Soc. 1993, 115, 11328–11335. (d) Leising, R. A.; Kim, J.; Perez, M. A.;
Que, L., Jr. J. Am. Chem. Soc. 1993, 115, 9524–9530. (e) Arends, I. W. C. E.;
Ingold, K. U.; Wayner, D. D. M. J. Am. Chem. Soc. 1995, 117, 4710–4711.
(13) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F. J. Chem. Soc.,
Chem. Commun. 1994, 1823–1824.
ꢁ
V. V. Mini-Rev. Med. Chem. 2005, 5, 319–336. (f) Terzic, N.; Opsenica, D.;
ꢀ
ꢁ
Milic, D.; Tinant, B.; Smith, K. S.; Milhous, W. K.; Solaja, B. A. J. Med.
Chem. 2007, 50, 5118–5127. (g) Opsenica, D.; Kyle, D. E.; Milhous, W. K.;
ꢀ
Solaja, B. A. J. Serb. Chem. Soc. 2003, 68, 291–302. (h) Zizak, Z.; Juranic, Z.;
ꢀ
ꢀ
ꢀ
Opsenica, D.; Solaja, B. A. Invest. New Drugs 2009, 27, 432–439.
ꢁ
ꢀ
(6) (a) Barbosa, L. C. A.; Maltha, C. R. A.; Cusati, R. C.; Teixeira, R. R.;
Rodrigues, F. F.; Silva, A. A.; Drew, M. G. B.; Ismail, F. M. D. J. Agric. Food
Chem. 2009, 57, 10107–10115. (b) Macıas, F. A.; Chinchilla, N.; Varela,
R. M.; Molinillo, J. M. G. Steroids 2006, 71, 603–608. (c) Barbosa, L. C. A.;
Pereira, U. A.; Teixeira, R. R.; Maltha, C. R. A.; Fernandes, S. A.; Forlani,
G. J. Agric. Food Chem. 2008, 56, 9434–9440. (d) Chen, P. K.; Leather, G. R.
J. Chem. Ecol. 1990, 16, 1867–1876.
(7) (a) Dubnikova, F.; Kosloff, R.; Almog, J.; Zeiri, Y.; Boese, R.;
Itzhaky, H.; Alt, A.; Keinan, E. J. Am. Chem. Soc. 2005, 127, 1146–1159.
(b) Meyer, R. Explosives; Verlag Chemie: Weinheim, NY, 1977. (c) Denekamp,
C.; Gottlieb, L.; Tamiri, T.; Tsoglin, A.; Shilav, R.; Kapon, M. Org. Lett. 2005, 7,
2461–2464. (d) Muller, D.; Levy, A.; Shelef, R.; Abramovich-Bar, S.; Sonenfeld,
D.; Tamiri, T. J. Forensic Sci. 2004, 49, 935–938. (e) Fialkov, A. B.; Amirav, A.
Rapid Commun. Mass Spectrom. 2003, 17, 1326–1338. (f) Schulte-Ladbeck, R.;
Kolla, P.; Karst, U. Analyst 2002, 127, 1152–1154. (g) Widmer, L.; Watson, S.;
Schlatter, K.; Crowson, A. Analyst 2002, 127, 1627–1632. (h) Yavari, I.;
Hosseini-Tabatabaei, M. R.; Nasiri, F. THEOCHEM 2001, 538, 239–244.
(8) Terent’ev, A. O.; Borisov, D. A.; Chernyshev, V. V.; Nikishin, G. I.
J. Org. Chem. 2009, 74, 3335–3340.
(14) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F.; Banfi, S.; Quici,
S. J. Am. Chem. Soc. 1995, 117, 226–232.
(15) (a) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490–1501.
(b) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.;
Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820–7822. (c) Murahashi, S.-I.;
Naota, T.; Yonemura, K. J. Am. Chem. Soc. 1988, 110, 8256–8258.
(16) (a) Heathcock, C. H.; Mahaim, C.; Schlecht, M. F.; Utawanit, T.
J. Org. Chem. 1984, 49, 3264–3274. (b) Ancerewicz, J.; Vogel, P. Helv. Chim.
Acta 1996, 79, 1393–1414. (c) Andriamialisoa, R. Z.; Langlois, N.; Langlois,
Y. J. Org. Chem. 1985, 50, 961–967.
(17) (a) Adam, W.; Smerz, A. K. Tetrahedron 1996, 52, 5799–5804.
(b) Barrett, A. G. M.; Head, J.; Smith, M. L.; Stock, N. S.; White, A. J. P.;
Williams, D. J. J. Org. Chem. 1999, 64, 6005–6018. (c) Smith, A. M. R.;
Billen, D.; Hii, K. K. (M.). Chem. Commun. 2009, 3925–3927. (d) Smith,
A. M. R.; Rzepa, H. S.; White, A. J. P.; Billen, D.; Hii, K. K. (M.). J. Org.
Chem. 2010, 75, 3085–3096.
€
(18) (a) Li, D.; Schroder, K.; Bitterlich, B.; Tse, M. K.; Beller, M.
Tetrahedron Lett. 2008, 49, 5976–5979. (b) Abu-Omar, M. M.; Espenson,
J. H. Organometallics 1996, 15, 3543–3549.
(9) (a) Kharasch, M. S.; Pauson, P.; Nudenberg, W. J. Org. Chem. 1953,
18, 322–327. (b) Kharasch, M. S.; Fono, A. J. Org. Chem. 1958, 23, 324–325.
(c) Kharasch, M. S.; Fono, A. J. Org. Chem. 1959, 24, 72–78.
(19) (a) Yoshioka, M.; Nishioka, T.; Hasegawa, T. J. Org. Chem. 1993,
58, 278–281. (b) Christoffers, J.; Werner, T.; Frey, W.; Baro, A. Eur. J. Org.
Chem. 2003, 4879–4886. (c) Rahman, M. T.; Nishino, H. Org. Lett. 2003, 5,
2887–2890. (d) Irie, H.; Katakawa, J.; Tomita, M.; Mizuno, Y. Chem. Lett.
1981, 637–640. (e) Wasserman, H. H.; Pickett, J. E. J. Am. Chem. Soc. 1982,
104, 4695–4696. (f) Hiroya, K.; Ogasawara, K. Chem. Commun. 1999, 2197–
2198. (g) Watanabe, T.; Ishikawa, T. Tetrahedron Lett. 1999, 40, 7795–7798.
(h) Christoffers, J. J. Org. Chem. 1999, 64, 7668–7669. (i) Baucherel, X.;
Levoirier, E.; Uziel, J.; Juge, S. Tetrahedron Lett. 2000, 41, 1385–1387.
(j) Richardson, A. M.; Chen, C.-H.; Snider, B. B. J. Org. Chem. 2007, 72,
8099–8102. (k) Monguchi, Y.; Takahashi, T.; Iida, Y.; Fujiwara, Y.; Inagaki,
Y.; Maegawa, T.; Sajiki, H. Synlett 2008, 2291–2294.
(10) (a) Shul’pin, G. B.; Gradinaru, J.; Kozlov, Y. N. Org. Biomol. Chem.
2003, 1, 3611–3617. (b) Araneo, S.; Fontana, F.; Minisci, F.; Recupero, F.;
Serri, A. J. Chem. Soc., Chem. Commun. 1995, 1399–1400. (c) Bravo, A.;
Bjørsvik, H.-R.; Fontana, F.; Liguori, L.; Minisci, F. J. Org. Chem. 1997, 62,
3849–3857. (d) Meder, M. B.; Gade, L. H. Eur. J. Inorg. Chem. 2004, 2716–
2722. (e) Vida, J. A.; Samour, C. M.; O’Dea, M. H.; Wang, T. S. T.;
Reinhard, J. F. J. Med. Chem. 1974, 17, 1194–1197. (f) Li, Z.; Li, C.-J.
J. Am. Chem. Soc. 2005, 127, 6968–6969. (g) Punniyamurthy, T.; Rout, L.
Coord. Chem. Rev. 2008, 252, 134–154.
5066 J. Org. Chem. Vol. 75, No. 15, 2010