3960
L. B. Peterson, B. S. J. Blagg / Bioorg. Med. Chem. Lett. 20 (2010) 3957–3960
lines. Western blot analysis affirmed Hsp90 inhibition by this class
of compounds. The compounds described herein exhibit compara-
ble activities to the corresponding amide-containing analogues.
These results indicate that the amide moiety can be replaced by
the triazole functionality, however, in some cases the loss of the
hydrogen bond donor appears detrimental, but can be overcome
by the inclusion of steric bulk in the triazole substituent.
Acknowledgements
Figure 2. Western blot analysis for compound 14b.
The authors gratefully acknowledge the support of this project
by NIH CA120458 and the NIH Training Grant (T32 GM008545)
on Dynamic Aspects in Chemical Biology (L.B.P.).
are comparable against the two cell lines tested. One discrepancy
observed between the amide and triazole analogues is that in
which simple aryl side chains (6–10) manifest IC50 values in the
M range for the amide-containing molecules while the tri-
azole compounds 6 and 9 display IC50 values above 50
Supplementary data
10–20
l
l
M.13 These
Supplementary data associated with this article can be found, in
results suggest that the triazole moiety affects biological activity in
two ways: the availability of a hydrogen bond donor in the amide
linkage and the steric bulk of the side chain. This hydrogen bond
contact is lost upon introduction of the triazole moiety, but can
be overcome by the introduction of steric bulk in the side chain.
A preference for steric bulk has been observed in several series of
novobiocin analogues, and appears to be a contributing factor to
biological activity.
After analysis of the triazole-containing analogues anti-prolifer-
ative activity, Western blot analysis was preformed for the most
active compound, 14b, to confirm anti-proliferative activity results
from Hsp90 inhibition (Fig. 2). Western blot analysis of MCF-7 cells
treated with increasing concentrations of 14b, induce Hsp90-
dependent client protein degradation in a dose-dependent manner,
with an apparent IC50 value that correlates directly to the anti-pro-
liferative IC50 value. Her2 and c-Raf are client proteins of Hsp90,
and pharmacological inhibition of Hsp90 leads to their degradation
via ubiquitinylation and proteome-mediated hydrolysis. Addition-
ally, compound 14b appears to have little effect on the heat shock
response, as unaltered levels of Hsp90 were observed, consistent
with inhibition of the Hsp90 C-terminus. In contrast, client protein
degradation and heat shock induction was not observed for the
inactive compound 10b (data not shown). Western blot analysis
indicates that these compounds are interfering with the Hsp90-
mediated protein folding process, and that the anti-proliferative
activities for these compounds are directly related to Hsp90
inhibition.
References and notes
1. Bishop, S. C.; Burlison, J. A.; Blagg, B. S. J. Curr. Cancer Drug Targets 2007, 7, 369.
2. Blagg, B. S. J.; Kerr, T. D. Med. Res. Rev. 2006, 26, 310.
3. Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.
4. Zhang, H.; Burrows, F. J. Mol. Med. 2004, 82, 488.
5. Soti, C.; Nagy, E.; Giricz, Z.; Vigh, L.; Csermely, P.; Ferdinandy, P. Brit. J.
Pharmacol. 2005, 146, 769.
6. Chiosis, G.; Vilenchik, M.; Kim, J.; Solit, D. Drug Discovery Today 2004, 9, 881.
7. Walter, S.; Buchner, J. Angew. Chem., Int. Ed. 2002, 41, 1098.
8. Biamonte, M. A.; Van de Water, R.; Arndt, J. W.; Scannevin, R. H.; Perret, D.; Lee,
W. J. Med. Chem. 2010, 53, 3.
9. Prodromou, C.; Panaretou, B.; Chohan, S.; Siligardi, G.; O’Brien, R.; Ladbury, J. E.;
Roe, S. M.; Piper, P. W.; Pearl, L. H. EMBO J. 2000, 19, 4383.
10. Donnelly, A.; Blagg, B. S. J. Curr. Med. Chem. 2008, 15, 2702.
11. Marcu, M. G.; Chadli, A.; Bouhouche, I.; Catelli, M. G.; Neckers, L. J. Biol. Chem.
2000, 2000, 37181.
12. Marcu, M. G.; Schulte, T. W.; Neckers, L. J. Natl. Cancer Inst. 2000, 92, 242.
13. Burlison, J. A.; Avila, C.; Vielhauer, G.; Lubbers, D. J.; Holzbeierlein, J.; Blagg, B. S.
J. J. Org. Chem. 2008, 73, 2130.
14. Burlison, J. A.; Blagg, B. S. J. Org. Lett. 2006, 8, 4855.
15. Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg, B. S. J. J. Am. Chem.
Soc. 2006, 128, 15529.
16. Donnelly, A.; Mays, J. R.; Burlison, J. A.; Nelson, J. T.; Vielhauer, G.;
Holzbeierlein, J.; Blagg, B. S. J. J. Org. Chem. 2008, 73, 8901.
17. Yu, X. M.; Shen, G.; Neckers, L.; Blake, H.; Holzbeierlein, J.; Cronk, B.; Blagg, B. S.
J. J. Am. Chem. Soc. 2005, 127, 12778.
18. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.
19. Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A.
Med. Res. Rev. 2008, 28, 278.
20. Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q. Org. Lett.
2004, 6, 4603.
21. Shen, G.; Yu, X. m.; Blagg, B. S. J. Bioorg. Med. Chem. Lett. 2004, 14, 5903.
In conclusion, a series of triazole-containing novobiocin ana-
logues was prepared and evaluated against two breast cancer cell