10.1002/anie.201811858
Angewandte Chemie International Edition
COMMUNICATION
2
3
For recent books, see: a) Chemical Photocatalysis, Eds. B. König,
DeGruyter Berlin, 2013; b) Photochemically generated intermediates in
Synthesis, Eds A. Albini, M. Fagnoni, Wiley, Hoboken, 2013; c) Visible
Light Photocatalysis in Organic Chemistry Stephenson, C.; Yoon, T.;
which bears a methoxycarbonyl group at the 2 position, returned
,-unsaturated ketone 7a in
a
66% yield. When
phenylallylsulfone 6b was reacted with cyclohexylsilicate 1a and
CO, it gave the expected enone 7b in a 60% yield. Primary
radicals are good substrates for the present radical allylation
regardless of whether it is a linear alkyl (7c, 58%), or a branched
alkyl (7d, 51%). The reaction with a tertiary alkylsilicate gave the
desired enone 7e in a 40% yield together with a non-carbonylated
addition product. These allylation reactions followed the pattern of
the mechanism reported in Scheme 3, in which the photocatalyst
was regenerated by a reduction of the phenylsulfonyl radical to a
phenylsulfinate anion.[7c] The ketones formed herein could be
useful scaffolds. For instance, 1,4 ketone 3j could be used
through a Paal-Knorr reaction for the synthesis of pyrroles or
thiophenes. These heteroaromatics can be found in many natural
products but also in biological active compounds such as HMG-
CoA reductase inhibitors and hepatitis C virus polymerase
inhibitors.[29]
MacMillan, D.W. C. Eds. Wiley-VCH 2018
.
a) S. J. MacCarver, J. X. Qiao, J. Carpenter, R. M. Borzirelli, M. A. Poss,
M. D. Eastgate, M. M. Miller, D. W. C. MacMillan, Angew. Chem. Int. Ed
2017, 56, 728-732; Angew. Chem. 2017, 129, 746-750; b) Z. Zuo, H.
Cong, W. Li, J. Choi, G. C. Fu, D. W. C. MacMillan, J. Am. Chem. Soc.
2016, 138, 1832-1835; c) C. C. Nawrat, C. R. Jamison, Y. Slutskyy, D.
W. C. MacMillan, L. E. Overman, J. Am. Chem. Soc. 2015, 137, 11270-
11273; d) A. Noble, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136,
11602-11605.
a) T. Koike, M. Akita, Org. Biomol. Chem. 2016, 14, 6886-6890; b) Y.
Li, K, Miyazawa, T. Koike, M. Akita, Org. Chem. Front. 2015, 2, 319-
323; c) Y. Yasu, T. Koike, M. Akita, Adv. Synth. Catal., 2012, 354, 3414-
3420.
T. Knauber, R. Chandrasekaran, J. W. Tucker, J. M. Chen, M. Reese,
D. A. Rankic, N. Sach, C. Helal, Org. Lett., 2017, 19, 6566-6569.
C. L. Frye, J. Am. Chem. Soc. 1964, 86, 3170-3171.
a) L. Chenneberg, C. Lévêque, V. Corcé, A. Baralle, J.-P. Goddard, C.
Ollivier, L. Fensterbank, Synlett 2016, 27, 731-735; b) C. Lévêque, L.
4
5
6
7
Chenneberg, V. Corcé, C. Ollivier, L. Fensterbank, Chem. Comm. 2016
,
In summary, herein, we described an oxidative photoredox
catalysis combined with radical carbonylation chemistry, for the
first time. The present reaction protocol was based on the use of
an inexpensive organic dye, 4CzIPN, as a photocatalyst and on a
wide range of alkyl bis(catecholato)silicates that were used as
alkyl radical precursors under a CO atmosphere, which afforded
efficient access to a variety of functionalized unsymmetrical
ketones including ,-unsaturated ketones. These results
demonstrate the plausibility of other photocatalyzed radical
carbonylation reactions under oxidative regimes that we are now
exploring in our laboratory.
52, 9877-9880; c) V. Corcé, L.-M. Chamoreau, E. Derat, J.-P. Goddard,
C. Ollivier, L. Fensterbank, Angew. Chem., Int. Ed. 2015, 54, 11414-
11418; Angew. Chem. 2015, 127, 11576-11580.
M. Jouffroy, D. N. Primer, G. A. Molander, J. Am. Chem. Soc. 2016
138, 475-478.
a) K. D. Raynor, G. D. May, U. K. Bandarage, M. J. Boyd, J. Org. Chem.
2018, 83, 1551-1557; b) T. Guo, X. Liu, Y. Fang, X. Jin, Y. Yang, Y. Li,
B. Chen, M. Ouyang, Adv. Synth. Catal. 2018, 360, 1-6.
8
9
,
10 For recent examples of reactions using 4CzIPN as photocatalyst, see:
a) X. Wentao, J. Ma, X.-A. Yuan, J. Dai, J. Xie, C. Zhu, Angew. Chem.
Int. Ed., 2018, 57, 10357-10361; Angew. Chem., 2018, 130, 10514-
10518; b) F. L. Vaillant, M. Garreau, S. Nicolai, G. Gryn'ova, C.
Corminboeuf, J. Waser, Chem. Sci. 2018, 9, 5883- 5889 ; c) R. Zhou,
Y. Y. Goh, H. Liu, H. Tao, L. Li, J. Wu, Angew. Chem. Int. Ed., 2017
,
56, 16621-16625; Angew. Chem., 2017, 129, 16848-16852; d) H.
Huang, X. Li, C. Yu, Y. Zhang, P. S. Mariano, W. Wang, Angew. Chem.
Int. Ed., 2017, 56, 1500-1505; Angew. Chem., 2017, 129, 1522-1527;
e) H. Huang, C. Yu, Y. Zhang, Y. Zhang, P. S. Mariano, W. Wang, J.
Am. Chem. Soc., 2017, 139, 9799-9802; f) B. A. Vara, M. Jouffroy, G.
A. Molander, Chem. Sci. 2017, 8, 530-535.
Acknowledgements
This work was supported by the Grant-in-Aid for Scientific Research
(A) (No. 26248031) and (C) (No. 17K05866) from the JSPS, and
Scientific Research on Innovative Areas 2707: Middle molecular
strategy (No. 15H05850) from the MEXT. We thank Sorbonne
University, ANR-17-CE07-0018 HyperSilight (PhD grant to E.L.).
11 N. R. Patel, C. B. Kelly, A. P. Siegenfeld, G. A. Molander, ACS Catal.
2017, 7, 1766-1770.
12 For selected books and reviews, see: a) A. P. Taylor, R. P. Robinson,
Y. M. Fobian, D. C. Blakemore, L. H. Jones, O. Fadeyi, Org, Biomol.
Chem. 2016, 14, 6611-6637; b) R. C. Cioc, E. Ruijter, R. V. A. Orru,
Green Chem. 2014, 16, 2958-2975; c) V. Liautard, Y. Landais, in
Multicomponent Reactions, Eds. Zhu, J., Wang, Q., Wang, M. X., Wiley,
2nd Edition, 2014, 401-438; d) A. Dömling, W. Wang, K. Wang, Chem.
Rev. 2012, 116, 3083-3135; e) C. de Graff, E. Ruijter,. V. A. Orru,
Chem. Soc. Rev. 2012, 41, 3969-4009; f) H. Pellissier, Adv. Synth.
Conflicts of interest
None to declare.
Catal. 2012, 354, 237-294; h) B. B. Touré, D. G. Hall, Chem. Rev., 2009
,
109, 4439-4486; i) B. Ganem, Acc. Chem. Res. 2009, 42, 463-472; k)
M. Tojino, I. Ryu in Multicomponent Reaction Eds. J. Zhu, H. Bienaymé,
Wiley-VCH, Weinheim, 2005, 169-198.
Keywords: carbonylation • three-component reaction •
photocatalysis • radicals • silicates
13 For reviews on radical carbonylation, see: b) I. Ryu, Y. Uenoyama, H.
Matsubara, Bull. Chem. Soc. Jpn. 2006, 79, 1476-1488; c) I. Ryu,
Chem. Rec., 2002, 2, 249-258; d) I. Ryu, Chem. Soc. Rev. 2001, 30,
16-25; e) I. Ryu, N. Sonoda, D. P. Curran, Chem. Rev. 1996, 96, 177-
194; f) I. Ryu, N. Sonoda, Angew. Chem. Int. Ed. Engl. 1996, 35, 1050-
1066, Angew. Chem 1996, 108, 1140-1157.
1
For selected reviews, see: a) L. Marzo, S. K. Pagire, O. Reiser, B.
König, Angew. Chem. Int. Ed, 2018, 57, 10034-10072; Angew. Chem.
2018, 130, 10188-10228; b) J. K. Matsui, S. B. Lang, D. R. Heitz, G. A.
Molander, ACS Catal. 2017, 7, 2563-2575; c) N. A. Romero, D. A.
Nicewicz, Chem. Rev., 2016, 116, 10075-10166; d) S. Poplata, A.
Tröster, Y-Q. Zou, T. Bach, Chem. Rev. 2016, 116, 9748-9815; e) K.
Nakajima, Y. Miyake, Y. Nishibayashi, Acc. Chem. Res. 2016, 49, 1946-
1956; f) D. Ravelli, S. Proti M. Fagnoni, Chem. Rev. 2016, 116, 9850-
9913; g) T. P. Yoon, Acc. Chem. Res., 2016, 49, 2307-2315; h) J.-R.
Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Acc. Chem. Res., 2016, 49, 1911-
1923; i) J.-P. Goddard, C. Ollivier, L. Fensterbank, Acc. Chem. Res.,
2016, 49, 1924-1936; j) T. Koike, M. Akita, Inorg. Chem. Front. 2014, 1,
562-576; k) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev.
2013, 113, 5322-5363; l) J. M. R. Narayanam, C. R. J. Stephenson,
Chem. Soc. Rev., 2011, 40, 102-103.
14 For a review on acyl radicals, see: C. Chatgilialoglu, D. Crich, M.
Komatsu, I. Ryu, Chem. Rev. 1999, 99, 1991-2070.
15 (a) H. Matsubara, T. Kawamoto, T. Fukuyama, I. Ryu, Acc. Chem. Res.,
2018, 51, 2023-2035; (b) S. Sumino, A. Fusano, T. Fukuyama, I. Ryu,
Acc. Chem. Res. 2014, 47, 1563-1574. Also see some recent work of
radical carbonyalation: (c) T. Kawamoto, A. Sato, I. Ryu, Chem. Eur. J.,
2015, 21, 14764-14767; (d) S. Sumino, T. Ui, Y. Hamada, T. Fukuyama,
I. Ryu, Org. Lett., 2015, 17, 4952-4955; (e) T. Kippo, K. Hamaoka, I.
Ryu, J. Am. Chem. Soc., 2013, 135, 632-635; (f) T. Fukuyama, N.
Nakashima, T. Okada, I. Ryu, J. Am. Chem. Soc., 2013, 135, 1006-
1008.
This article is protected by copyright. All rights reserved.