10.1002/anie.201813960
Angewandte Chemie International Edition
COMMUNICATION
[1]
a) S. Torii, Novel Trends in Elecroorganic Synthesis, Springer-Verlag,
Tokyo, 1998; b) H. Lund, O. Hammerich, Organic Electrochemistry, 5th
ed., CRC Press, Boca Raton, 2015.
[10] For PhI(OAc)2/I2 oxidation systems, see: a) P. De Armas, R. Carrau, J. I.
Concepción, C. G. Francisco, R. Hernández, E. Suárez, Tetrahedron Lett.
1985, 26, 2493; b) R. L. Dorta, C. G. Francisco, E. Suárez, J. Chem. Soc.,
Chem. Commun. 1989, 1168; c) M. Katohgi, H. Togo, K. Yamaguchi, Y.
Masataka, Tetrahedron 1999, 55, 14885; d) C. G. Francisco, A. J.
Herrera, E. Suárez, J. Org. Chem. 2003, 68, 1012; e) R. Fan, D. Pu, F.
Wen, J. Wu, J. Org. Chem. 2007, 72, 8994; f) N. R. Paz, D. Rodríguez-
Sosa, H. Valdés, R. Marticorena, D. Melián, M. B. Copano, C. C.
González, A. J. Herrera, Org. Lett. 2015, 17, 2370; g) E. A. Wappes, S.
C. Fosu, T. C. Chopko, D. A. Nagib, Angew. Chem. Int. Ed. 2016, 55,
9974. h) J. L. Courtneidge, J. Lusztyk, D. Pagé, Tetrahedron Lett. 1994,
35, 1003.
[2]
For representative recent reviews, see: a) J. B. Sperry, D. L. Wright,
Chem. Soc. Rev. 2006, 35, 605; b) J.-i. Yoshida, K. Kataoka, R.
Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265; c) R. Francke,
Beilstein J. Org. Chem. 2014, 10, 2858; d) M. Yan, Y. Kawamata, P. S.
Baran, Chem. Rev. 2017, 117, 13230; e) Y. Jiang, K. Xu, C. Zeng, Chem.
Rev. 2018, 118, 4485; f) D. Pletcher, R. A. Green, R. C. D. Brown, Chem.
Rev. 2018, 118, 4573; g) S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27; h) A.
Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2018, 57, 5594; i) S. Möhle, M. Zirbes, E. Rodrigo,
T. Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57,
6018; j) Q.-L. Yang, P. Fang, T.-S. Mei, Chin. J. Chem. 2018, 36, 338; k)
J. E. Nutting, M. R. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834.
For examples, see: a) A. Badalyan, S. S. Stahl, Nature 2016, 535, 406;
b) M. Rafiee, F. Wang, D. P. Hruszkewycz, S. S. Stahl, J. Am. Chem.
Soc. 2018, 140, 22; c) F. Wang, M. Rafiee, S. S. Stahl, Angew. Chem.
Int. Ed. 2018, 57, 6686; d) A. J. Lennox, S. L. Goes, M. P. Webster, H.
F. Koolman, S. W. Djuric, S. S. Stahl, J. Am. Chem. Soc. 2018, 140,
11227.
[11] For examples of I2-catalyzed HLF reactions with various oxidants, see:
a) C. Martínez, K. Muñiz, Angew. Chem. Int. Ed. 2015, 54, 8287; b) P.
Becker, T. Duhamel, C. J. Stein, M. Reiher, K. Muñiz, Angew. Chem. Int.
Ed. 2017, 56, 8004; c) T. Duhamel, C. J. Stein, C. Martínez, M. Reiher,
K. Muñiz, ACS Catal. 2018, 8, 3918; d) L. M. Stateman, E. A. Wappes,
K. M. Nakafuku, K. M. Edwardsand, D. A. Nagib, Chem. Sci. 2019, DOI:
10.1039/c8sc05685d.
[3]
[4]
[12] S. Herold, D. Bafaluy, K. Muñiz, Green Chem., 2018, 20, 3191.
[13] X. Hu, G. Zhang, F. Bu, L. Nie, A. Lei, ACS Catal. 2018, 8, 9370.
[14] T. Shono, Y. Matsumura, S. Katoh, K. Takeuchi, K. Sasaki, T. Kamada,
R. Shimizu, J. Am. Chem. Soc. 1990, 112, 2368.
a) M. Masui, S. Hara, T. Ueshima, T. Kawaguchi, S. Ozaki, Chem. Pharm.
Bull. 1983, 31, 4209; b) M. Masui, T. Kawaguchi, S. Ozaki, S. J. Chem.
Soc., Chem. Commun. 1985, 1484; c) E. J. Horn, B. R. Rosen, Y. Chen,
J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77; d)
D. P. Hruszkewycz, K. C. Miles, O. R. Thiel, S. S. Stahl, Chem. Sci. 2017,
8, 1282; e) Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr,
P. S. Baran, J. Am. Chem. Soc. 2017, 139, 7448.
[15] See also: S. Zhang, L. Li, M. Xue, R. Zhang, K. Xu, C. Zeng, Org. Lett.
2018, 20, 3443.
[16] For recent review on iodide-mediated electrolysis, see: K. Liu, C. Song,
A. Lei, Org. Biomol. Chem. 2018, 16, 2375. For representative examples,
see: b) W.-J. Gao, W.-C. Li, C.-C. Zeng, H.-Y. Tian, L.-M. Hu, R. D. Little,
J. Org. Chem. 2014, 79, 9613; c) J. Chen, W.-Q. Yan, C. M. Lam, C.-C.
Zeng, L.-M. Hu, R. D. Little, Org. Lett. 2015, 17, 986; d) S. Liang, C.-C.
Zeng, H.-Y. Tian, B.-G. Sun, X.-G. Luo, F.-Z. Ren, J. Org. Chem. 2016,
81, 11565; e) Q.-Q. Wang, K. Xu, Y.-Y. Jiang, Y.-G. Liu, B.-G. Sun, C.-
C. Zeng, Org. Lett. 2017, 19, 5517; f) S. Tang, X. Gao, A. Lei, Chem.
Commun. 2017, 53, 3354; g) H. Wang, J. Zhang, J. Tan, L. Xin, Y. Li, S.
Zhang, K. Xu, Org. Lett. 2018, 20, 2505.
[5]
a) Amino Group Chemistry: From Synthesis to the Life Sciences (Eds.:
A. Ricci), Wiley-VCH, Weinheim, 2008, pp. 55-92; b) H. M. L. Davies, J.
R. Manning, Nature 2008, 451, 417; c) T. Newhouse, P. S. Baran, Angew.
Chem. Int. Ed. 2011, 50, 3362; d) Y. Park, Y. Kim, S. Chang, Chem. Rev.
2017, 117, 9247.
[6]
[7]
For reviews, see: a) M. E. Wolff, Chem. Rev. 1963, 63, 55; b) Name
Reactions in Heterocyclic Chemistry (Eds.: J.-J. Li, E. J. Corey), Wiley,
Hoboken, 2005; c) L. M. Stateman, K. M. Nakafuku, D. A. Nagib,
Synthesis 2018, 50, 1569.
[17] For CV studies of TBAI and TEABr in CH3CN with KPF6 as supporting
electrolyte, see Supporting Information.
For early examples, see: a) A. W. Hofmann, Ber. Dtsch. Chem. Ges.
1879, 12, 984; b) A. W. Hofmann, Ber. Dtsch. Chem. Ges. 1883, 16, 558;
c) K. Löffler, C. Freytag, Ber. Dtsch. Chem. Ges. 1909, 42, 3427; d) E. J.
Corey, W. R. Hertler, J. Am. Chem. Soc. 1960, 82, 1657; e) S. W.
Baldwin, R. J. Doll, Tetrahedron Lett. 1979, 20, 3275.
[18] See the following and ref. 11d; E. A. Wappes, K. M. Nakafuku, D. A.
Nagib, J. Am. Chem. Soc. 2017, 139, 10204.
[19] X.-Q. Mou, X.-Y. Chen, G. Chen, G. He, Chem. Commun. 2018, 54, 515.
[20] Although it is unclear at this stage, the higher applied potential needed
to get excellent yield possibly stems from the deactivation of electrode
[8]
For recent examples with pre-formed N-X species as substrates, see: a)
H. Togo, Y. Hoshina, T. Muraki, H. Nakayama, M. Yokoyama, J. Org.
Chem. 1998, 63, 5193; b) L. R. Reddy, B. V. S. Reddy, E. J. Corey, Org.
Lett. 2006, 8, 2819; c) K. Chen, J. M. Richter, P. S. Baran, J. Am. Chem.
Soc. 2008, 130, 7247; d) K. Chen, P. S. Baran, Nature 2009, 459, 824;
e) E. C. Cherney, J. M. Lopchuk, J. C. Green, P. S. Baran, J. Am. Chem.
Soc. 2014, 136, 12592; f) Q. Qin, S. Yu, Org. Lett. 2015, 17, 1894; g) B.
J. Groendyke, D. I. Abusalim, S. P. Cook, J. Am. Chem. Soc. 2016, 138,
12771; h) M. A. Short, J. M. Blackburn, J. L. Roizen, Angew. Chem. Int.
Ed. 2018, 57, 296.
during bulk electrolysis.
[21] K. D. Collins, F. Glorius, Acc. Chem. Res. 2015, 48, 619.
[22] See Supporting Information for control experiments with stoichiometric
iodine as oxidant in the presence of different bases.
[23] See the Supporting Information for additive screening experiments under
the present iodide-mediated photo/electrochemical conditions.
[24] The PCET-initiated reactions in ref. 13 were conducted under constant
current conditions. The >2 V value noted here was determined by
monitoring the anode potential while reproducing the reported conditions.
[25] See Supporting Information for CV studies of TsNHMe with different
bases.
[26] NHPI oxidation takes place at ~0.5–0.9 V vs. Fc/Fc+, depending on the
identity of the proton acceptor. The potential is lower with stronger bases,
but PINO also decomposes more rapidly under basic conditions. See refs.
2k and 3b for further discussion.
[9]
For selected examples with N-H substrates, see: a) A. Verma, S. Patel,
Meenakshi, A. Kumar, A. Yadav, S. Kumar, S. Jana, S. Sharma, C. D.
Prasad, S. Kumar, Chem. Commun. 2015, 51, 1371; b) C. Q. O’Broin, P.
Fernández, C. Martínez, K. Muñiz, Org. Lett. 2016, 18, 436; c) J. Long,
X. Cao, L. Zhu, R. Qiu, C.-T. Au, S.-F. Yin, T. Iwasaki, N. Kambe, Org.
Lett. 2017, 19, 2793; d) T. Liu, M. C. Myers, J.-Q. Yu, Angew. Chem. Int.
Ed. 2017, 56, 306; e) S. Sathyamoorthi, S. Banerjee, J. Du Bois, N. Z.
Burns, R. N. Zare, Chem. Sci. 2018, 9, 100; f) P. Becker, T. Duhamel, C.
Martínez, K. Muñiz, Angew. Chem. Int. Ed. 2018, 57, 5166.
[27] a) Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic
Compounds, CRC, Boca Raton, FL, 2002; b) D. Šakić, H. Zipse, Adv.
Synth. Catal. 2016, 358, 3983.
This article is protected by copyright. All rights reserved.