5 M. D. Sadar, D. E. Williams, N. R. Mawji, B. O. Patrick,
T. Wikanta, E. Chasanah, H. E. Irianto, R. Van Soest and
R. J. Andersen, Org. Lett., 2008, 10, 4947–4950.
6 (a) For reviews, see: W. H. Gerwick, L. T. Tan and N. Sitachitta,
Nitrogen-containing metabolites from marine cyanobacteria, in The
Alkaloids: Chemistry and Biology, ed. G. A. Cordell, Academic
Press, San Diego, 2001, vol. 57, pp. 75–184; (b) A. M. Burja,
B. Banaigs, E. Abou-Mansour, G. Burgess and P. C. Wright,
Tetrahedron, 2001, 57, 9347–9377; (c) V. J. Paul and M. P.
Puglisi, Nat. Prod. Rep., 2006, 23, 153–180; (d) V. J. Paul and
R. Ritson-Williams, Nat. Prod. Rep., 2008, 25, 662–695;
(e) L. T. Tan, Phytochemistry, 2007, 68, 954–968.
7 H. Luesch, W. Y. Yoshida, R. E. Moore and V. J. Paul,
Tetrahedron, 2002, 58, 7959–7966.
8 A. C. Mita, L. A. Hammond, P. L. Bonate, G. Weiss,
H. McCreery, S. Syed, M. Garrison, Q. S. Chu, J. S. DeBono,
C. B. Jones, S. Weitman and E. K. Rowinsky, Clin. Cancer Res.,
2006, 12, 5207–5215.
9 (a) For recent examples, see: Y. Jin, Y. Liu, Z. Wang, S. Kwong,
Z. Xu and T. Ye, Org. Lett., 2010, 12, 1100–1103; (b) J. Chen,
X. G. Fu, L. Zhou, J. T. Zhang, X. L. Qi and X. P. Cao, J. Org.
Chem., 2009, 74, 4149–4157; (c) S. Suntornchashwej,
K. Suwanborirux and M. Isobe, Tetrahedron, 2007, 63, 3217–3226.
10 (a) G. R. Pettit, T. J. Thornton, J. T. Mullaney, M. R. Boyd,
D. L. Herald, S.-B. Singh and E. J. Flahive, Tetrahedron, 1994, 50,
12097–12108; (b) K. Akaji, Y. Hayashi, Y. Kiso and N. Kuriyama,
J. Org. Chem., 1999, 64, 405–411.
11 (a) M. Hosseini, H. Kringelum, A. Murray and J. E. Tønder, Org.
Lett., 2006, 8, 2103–2106; (b) M. Hosseini, D. Tanner, A. Murray
and J. E. Tønder, Org. Biomol. Chem., 2007, 5, 3486–3494.
12 R. Schobert, C. Jagusch, C. Melanophy and G. Mullen, Org.
Biomol. Chem., 2004, 2, 3524–3529.
13 (a) P.-Q. Huang, T.-J. Wu and Y.-P. Ruan, Org. Lett., 2003, 5,
4341–4344; (b) P.-Q. Huang and J. Deng, Synlett, 2004, 247–250;
(c) L.-J. Jiang, H.-Q. Lan, J.-F. Zheng, J.-L. Ye and P.-Q. Huang,
Synlett, 2009, 297–301.
14 M. Yamaura, T. Suzuki, H. Hashimoto, J. Yoshimura,
T. Okamoto and C. Shin, Bull. Chem. Soc. Jpn., 1985, 58,
1413–1420.
Scheme 4 Synthesis of palau’imide (1).
be introduced at the C-5 position that renders the method
flexible for the synthesis of other methyl 5-alkyltetramates. On
the basis of this method, the first asymmetric synthesis of
palau’imide (1) has been achieved in 9 steps starting from
compound 7 with an overall yield of 15%. This allowed the
confirmation of our assumption on the hitherto unknown
stereochemistry at the C-20 of palau’imide (2-methylhexanoic
acid residue) as S. The result also gave an indication about the
stereochemistry at the 2-methylhexanoic acid residue of the
cyanobacterial secondary metabolite malevamide A, which is
still unknown.
The authors are grateful to the NSF of China (20832005)
and the National Basic Research Program (973 Program) of
China (Grant No. 2010CB833200) for financial support.
15 (a) F. D. Horgen, W. Y. Yoshida and P. J. Scheuer, J. Nat. Prod.,
2000, 63, 461–467; (b) F. D. Horgen, E. B. Kazmierski,
H. E. Westenburg, W. Y. Yoshida and P. J. Scheuer, J. Nat. Prod.,
2002, 65, 487–491.
Notes and references
16 H. Luesch, W. Y. Yoshida, R. E. Moore and V. J. Paul, J. Nat.
Prod., 2000, 63, 1106–1112. 2R stereochemistry was predicted for
Moya and Moea in this paper.
1 (a) For reviews, see: J. W. Blunt, B. R. Copp, W. P. Hu, M. H.
G. Munro, P. T. Northcote and M. R. Prinsep, Nat. Prod. Rep.,
2009, 26, 170–244; (b) T.
L Simmons, E. Andrianasolo,
17 (a) J. I. Jimenez and P. J. Scheuer, J. Nat. Prod., 2001, 64, 200–203;
(b) H. L. Chen, Y. Q. Feng, Z. S. Xu and T. Ye, Tetrahedron, 2005,
61, 11132–11140.
18 The synthesis of this compound in 88% e.e. has been reported:
H. L. Goering and C. C. Tseng, J. Org. Chem., 1983, 48,
3986–3990.
19 (a) D. A. Evans, J. Bartroli and T. L. Shih, J. Am. Chem. Soc.,
1981, 103, 2127–2129; (b) C. P. Decicco and P. Grover, J. Org.
Chem., 1996, 61, 3534–3541.
20 (a) K. S. Kochhar and H. W. Pinnick, J. Org. Chem., 1984, 49,
3222–3224; (b) T. Koch and M. Hesse, Synthesis, 1992, 931–932.
21 R. M. Wenger, Helv. Chim. Acta, 1983, 66, 2672–2702.
22 M. Ousmer, N. A. Braun and M. A. Ciufolini, Org. Lett., 2001, 3,
765–768.
23 (a) M. B. Andrus, W. Li and R. F. Keyes, Tetrahedron Lett., 1998,
39, 5465–5468; (b) For a recent application of this method, see:
J. Chen, P.-Q. Huang and Y. Queneau, J. Org. Chem., 2009, 74,
7457–7463.
24 B. Neises and W. Steglich, Angew. Chem., Int. Ed. Engl., 1978, 17,
522–524.
K. McPhail, P. Flatt and W. H. Gerwick, Mol. Cancer Ther.,
2005, 4, 333–342; (c) M. L. Amador, J. Jimeno, L. Paz-Ares,
H. Cortes-Funes and M. Hidalgo, Ann. Oncol., 2003, 14,
1607–1615; (d) J. Jimeno, J. A. Lopez-Martın, A. Ruiz-Casado,
M. A. Izquierdo, P. J. Scheuer and K. Rinehart, Anti-Cancer Drugs,
2004, 15, 321–329; (e) A. M. S. Mayer and K. R. Gustafson, Eur. J.
Cancer, 2006, 42, 2241–2270; (f) A. M. S. Mayer and
K. R. Gustafson, Eur. J. Cancer, 2008, 44, 2357–2387.
2 (a) For reviews on the isolation and synthesis of tetramic acids/
methyl tetramates, see: B. J. L. Royles, Chem. Rev., 1995, 95,
1981–2001; (b) E. L. Ghisalberti, in Studies in Natural Products
Chemistry, Elsevier, 2003, vol. 28, part 9, pp. 109–163;
(c) R. Schobert, Naturwissenschaften, 2006, 94, 1–11;
(d) R. Schobert and A. Schlenk, Bioorg. Med. Chem., 2008, 16,
4203–4221.
3 G. R. Pettit, Y. Camano, C. Dufresne, R. L. Cerny, C. L. Herald
and J. M. Schmidt, J. Org. Chem., 1989, 54, 6005–6006.
4 S. Paik, S. Carmeli, J. Cullingham, R. E. Moore, G. M.
L. Patterson and M. A. Tius, J. Am. Chem. Soc., 1994, 116,
8116–8125.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 5319–5321 | 5321