imides toward nucleophiles11 suggested that the imide group
could react with an internal amine, unmasked in a preceding
step by a specific biochemical event (Scheme 1).
Examination of the literature revealed that a unique example
of a carbonyl carbamate bond formation by reaction of
thiobenzoic or thioacetic acid with azido benzylformate was
reported by the group of Williams.8g The feasibility of reacting
chemoselectively azidoformates 2 with polyfunctional thioacids
such as peptide thioacids 1 is to be established.
Scheme 1. Assembly of Conjugate 3 Using Imide Ligation:
Disassembly Is Triggered by an Endopeptidase
In this proof-of-concept study, cyclooxygenase (COX)
inhibitor 7a (Scheme 2) was used as the drug model (see
Scheme 2
.
Imide Ligation and Rearrangement Using Model
Thioacids 1a-c
The reaction of thioacids with azides has been studied by
several groups.8 The reaction with electron-rich azides such as
alkyl azides leads to the corresponding amides8g,i,j and can be
promoted by Ru(III).8h The reaction is particularly effective
with electron-poor azides such as sulfonyl azides8b-g,k,l and
has been used by Liskamp et al.8f,k and others8b,l for peptide
or protein conjugate synthesis. This chemistry is of great
interest for linking molecules to peptide carriers, but the
N-acyl sulfonamide bond formed in this reaction is stable
toward nucleophilic attack and thus cannot be easily cleaved
in a subsequent step as needed for our strategy (Scheme 1).
Activation of the N-acyl sulfonamide toward nucleophiles
can be achieved by alkylation9 but requires an additional
step and a protected peptide chain.10 Alternately, we envis-
aged the chemoselective formation of an imide bond by
reaction of peptide thioacids 1 with azidocarbonyl derivatives
2. Indeed, besides the potential interest of this reaction for
peptide-drug conjugate assembly, the known reactivity of
Supporting Information). COXs are involved in a number
of diseases.12 In particular, COX-2 is overexpressed in
prostate cancer13 and considered as a molecular target in this
disease.14 7a features an alcohol group, which was used for
attaching the azidocarbonyl moiety.
In a preliminary approach, we have examined the reaction
between model amino thioacids 1a-c and azidocarbonyl
derivative 2a. Reaction in N,N-dimethylformamide in the
presence of triethylamine successfully afforded imides 3a-c
in excellent yield, which were subsequently used to explore
the cyclization-based disassembly step (Scheme 2). To this end,
the amino group of 3a,c was deprotected in TFA to provide
(8) (a) Kolakowski, R. V.; Shangguan, N.; Sauers, R. R.; Williams, L. J.
J. Am. Chem. Soc. 2006, 128, 5695. (b) Zhang, X.; Li, F.; Lu, X. W.; Liu,
C. F. Bioconjugate Chem. 2009, 20, 197. (c) Merkx, R.; van Haren, M. J.;
Rijkers, D. T.; Liskamp, R. M. J. Org. Chem. 2007, 72, 4574. (d)
Kolakowski, R. V.; Shangguan, N.; Williams, L. J. Tetrahedron Lett. 2006,
47, 1163. (e) Barlett, K. N.; Kolakowski, R. V.; Katukojvala, S.; Williams,
L. J. Org. Lett. 2006, 8, 823. (f) Merkx, R.; Brouwer, A. J.; Rijkers, D. T.;
Liskamp, R. M. Org. Lett. 2005, 7, 1125. (g) Shangguan, N.; Katukojvala,
S.; Greenberg, R.; Williams, L. J. J. Am. Chem. Soc. 2003, 125, 7754. (h)
Fazio, F.; Wong, C.-H. Tetrahedron Lett. 2003, 44, 9083. (i) Paulsen, H.;
Peters, S.; Bielfeldt, T.; Meldal, M.; Bock, K. Carbohydr. Res. 1995, 268,
17. (j) Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53, 1580.
(k) Rijkers, D. T.; Merkx, R.; Yim, C. B.; Brouwer, A. J.; Liskamp, R. M.
J. Pept. Sci. 2010, 16, 1. (l) Zhang, X.; Lu, X. W.; Liu, C. F. Tetrahedron
Lett. 2008, 49, 6122.
(10) (a) Ingenito, R.; Bianchi, E.; Fattori, D.; Pessi, A. J. Am. Chem.
Soc. 1999, 121, 11369. (b) Shin, Y.; Winans, K.; Backes, B. J.; Kent,
S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684.
(11) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc.
1982, 104, 1737. (b) Tsunoda, T.; Sasaki, O.; Takeuchi, O.; Itoˆ, S.
Tetrahedron Lett. 1991, 47, 3925. (c) Hogberg, H.-E. Houben-Weyl, Methods
of Organic Chemistry: StereoselectiVe Synthesis. Thieme: Stuttgart, 1996;
Vol. 2, p 883.
(12) Dubois, R. N.; Abramson, S. B.; Crofford, L.; Gupta, R. A.; Simon,
L. S.; Van De Putte, L. B.; Lipsky, P. E. FASEB J. 1998, 12, 1063.
(13) Gupta, S.; Srivastava, M.; Ahmad, N.; Bostwick, D. G.; Mukhtar,
H. Prostate 2000, 42, 73.
(14) (a) Aparicio Gallego, G.; Diaz Prado, S.; Jimenez Fonseca, P.;
Garcia Campelo, R.; Cassinello Espinosa, J.; Anton Aparicio, L. M. Clin.
Transl. Oncol. 2007, 9, 694. (b) Liao, Z.; Mason, K. A.; Milas, L. Drugs
2007, 67, 821.
(9) (a) Kenner, G. W.; McDermott, J. R.; Sheppard, R. C. J. Chem.
Soc., Chem. Commun. 1971, 118, 3055. (b) Heidler, P.; Link, A. Bioorg.
Med. Chem. 2005, 13, 585.
Org. Lett., Vol. 12, No. 18, 2010
3983