Letter
NJC
Notes and references
1 (a) D. C. Meadows and J. G. Hague, Med. Res. Rev., 2006,
26, 793; (b) S. S. Ponnerassery, C. Samuel and D. C. Kenneth,
Dis. Aquat. Org., 2007, 78, 115.
2 (a) M. M. Santos and R. Moreira, Mini-Rev. Med. Chem.,
2007, 7, 1040; (b) A. F. Kisselev, W. A. van der Linden and
H. S. Overkleeft, Chem. Biol., 2012, 19, 99.
3 C. E. Bohl, W. Gao, D. D. Miller, C. E. Bell and J. T. Dalton,
Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 6201.
4 D. C. Meadows, T. Sanchez, N. Neamati, T. W. North and
J. Gervay-Hague, Bioorg. Med. Chem., 2007, 15, 1127.
5 S. Y. Woo, J. H. Kim, M. K. Moon, S. H. Han, S. K. Yeon,
J. W. Choi, B. K. Jang, H. J. Song, Y. G. Kang, J. W. Kim,
J. Lee, D. J. Kim, O. Hwang and K. D. Park, J. Med. Chem.,
2014, 57, 1473.
6 (a) J. N. Desrosiers and A. B. Charette, Angew. Chem., Int. Ed.,
2007, 46, 5955; (b) S. Farhat and I. Marek, Angew. Chem., Int.
Ed., 2002, 41, 1410; (c) K. Yoshida and T. Hayashi, J. Am.
Chem. Soc., 2003, 125, 2872; (d) T. P. Burkholder and P. L.
Fuchs, J. Am. Chem. Soc., 1990, 112, 9601; (e) M. Y. Chang,
Y. J. Lu and Y. C. Cheng, Tetrahedron, 2015, 71, 1192;
( f ) A. S. Kende and J. S. Mendoza, Tetrahedron Lett., 1990,
31, 7105; (g) G. Solladie, C. Frechou, G. Demailly and
C. Greck, J. Org. Chem., 1986, 51, 1912.
7 D. A. R. Happer and B. E. Steenson, Synthesis, 1980, 806.
8 G. Wang, U. Mahesh, G. Y. J. Chen and S. Q. Yao, Org. Lett.,
2003, 5, 737.
9 (a) H. Qian and X. Huang, Synlett, 2001, 1913; (b) V. Nair,
A. Augustine, T. G. George and L. G. Nair, Tetrahedron Lett.,
2001, 42, 6763; (c) P. B. Hopkins and P. L. Fuchs, J. Org.
Chem., 1978, 43, 1208.
Scheme 5 Plausible mechanism.
reaction is performed at high temperatures, the copper
complex 10 undergoes homolytic cleavage and adds to alkene
1 via 1,2-addition, affording the corresponding complex 11
(Scheme 5II, path a). Complex 11 undergoes a dehydrative
b-elimination to afford the vinyl sulfone 3. The residual copper–
phosphorous complex is oxidized to recycle catalyst Cu2+ and non-
toxic phosphite anions. When the reaction is performed at low
temperatures, complex 10 undergoes homolytic cleavage to form a
t-butyl sulfonyl radical, which reacts with alkene 1 to afford the
radical 12. Meanwhile, the residual copper-phosphorous radical
captures one molecule of O2, resulting in an active-oxygen
complex 13.21a Then, the radical 12 is attacked by this active-
oxygen complex 13, affording complex 14. Complex 14 reacts with
water, forming hydroperoxide 15, phosphite anions and copper(I)
ions. The oxygen–oxygen bond of the hydroperoxide of 15 is weak
and undergoes homolysis to react with another molecule 5 to
yield b-hydroxy sulfone 4 and a hydroxyl radical (Scheme 5II, path
b). Finally, the hydroxyl radical is quenched by phosphorous acid
to give phosphoric acid, the phosphite anion was protonated by
TFA to form phosphorous acid and Cu+ is oxidized back to Cu2+
by O2 in the air (Scheme 5III).
10 (a) M. C. Bernabeu, P. Bonete, F. Caturla, R. Chinchilla and
´
C. Najera, Tetrahedron: Asymmetry, 1996, 7, 2475; (b) D. Zhang,
T. Cheng, Q. Zhao, J. Xu and G. Liu, Org. Lett., 2014, 16, 5764;
(c) X. Wan, Q. Meng, H. Zhang, Y. Sun, W. Fan and Z. Zhang,
Org. Lett., 2007, 9, 5613.
´
11 (a) A. L. Moure, R. G. Arrayas and J. C. Carretero, Chem.
Conclusions
Commun., 2011, 47, 6701; (b) J. Wang, Li. Wu, X. Hu, R. Liu,
R. Jin and G. Liu, Catal. Sci. Technol., 2017, 7, 4444.
12 (a) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh
and A. Lei, Chem. Rev., 2017, 117, 9016; (b) S. Tang, K. Liu,
C. Liu and A. Lei, Chem. Soc. Rev., 2015, 44, 1070.
13 For select examples see: (a) D. Wang, R. Zhang, S. Lin,
Z. Yan and S. Guo, Synlett, 2016, 2003; (b) H. Jiang, X. Chen,
Y. Zhang and S. Yu, Adv. Synth. Catal., 2013, 355, 809;
(c) S. K. Pagire, S. Paria and O. Reiser, Org. Lett., 2016,
18, 2106.
14 For select examples see: (a) R. Singh, B. K. Allam, N. Singh,
K. Kumari, S. K. Singh and K. N. Singh, Org. Lett., 2015,
17, 2656; (b) G. Rong, J. Mao, H. Yan, Y. Zheng and
G. Zhang, J. Org. Chem., 2015, 80, 4697; (c) X. Li, L. Xu,
W. Wu, C. Jiang, C. Qi and H. Jiang, Chem. – Eur. J., 2014,
20, 7911; (d) Y. Zhao, Y. L. Lai, K. S. Du, D. Z. Lin and
J. M. Huang, J. Org. Chem., 2017, 82, 9655; (e) T. Taniguchi,
A. Idota and H. Ishibashi, Org. Biomol. Chem., 2011, 9, 3151;
In conclusion, we developed a novel temperature-dependent
methodology for the synthesis of organic sulfones using t-butyl-
sulfinamide as a sulfur source under aerobic CuSO4-phosphorous
acid catalyzed reaction conditions. Two different kinds of
organic sulfones, vinyl sulfones and b-hydroxy sulfones were
synthesized through the cleavage of the N–S bond of
t-butylsulfinamide and the formation of C–S bonds with
alkenes at 120 1C and 40 1C, respectively. The newly developed
synthetic method broadens the reaction scope of t-butylsulfin-
amide and provides an alternative for the synthesis of pharma-
ceutically and biologically important vinyl sulfones and
b-hydroxy sulfones.
Conflicts of interest
There are no conflicts to declare.
17944 | New J. Chem., 2019, 43, 17941--17945 This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019