6570 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 18
Harrak et al.
mechanics generalized Born/surface area) method as implemen-
ted in AMBER 9.37
(3) Gund, P.; Shen, T. Y. A model for the prostaglandin synthetase
cyclooxygenase site and its inhibition by antiinflammatory aryla-
cetic acids. J. Med. Chem. 1977, 20, 1146–1152.
MM-GBSA has consistently been shown to be a good method
for comparing binding energies of complexes similar to those in
this case.38,39 MM-GBSA computes the binding free energy
by using a thermodynamic path that combines the molecular
mechanical energies with the continuum solvent approaches.
In the MM-GBSA method, the total binding free energy in
(4) Jouzeau, J. Y.; Terlain, B.; Abid, A.; Nedelec, E.; Netter, P. Cyclo-
oxygenase isoenzymes. How recent findings affect thinking about
nonsteroidal anti-inflammatory drugs. Drugs 1997, 53, 563–582.
(5) (a) Mc Gettigan, P.; Henry, D. Current problems with non-specific
COX inhibitors. Curr. Pharm. Des. 2000, 6, 1693–1724. (b) Barbaric,
M.; Kralj, M.; Marjanovic, M.; Husnjak, I.; Pavelic, K.; Filipavic-Grcic,
J.; Zorc, D.; Zorc, B. Synthesis and in vitro antitumor effect of
diclofenac and fenoprofen thiolated and non-thiolated polyaspartamide-
drug conjugates. Eur. J. Med. Chem. 2007, 42, 20–29.
(6) Moore, B. C.; Simmons, D. L. COX-2 inhibition. Apoptosis and
chemoprevention by nonsteroidal anti-inflammatory drugs. Curr.
Med. Chem. 2000, 7, 1131–1144.
(7) Chen, L.; He, Y.; Huang, H.; Liao, H.; Wei, W. Selective COX-2
inhibitor celecoxib combined with EGFR-TKI ZD 1839 on non-
small cell lung cancer cell lines: in vitro toxicity and mechanism
study. Med. Oncol. 2008, 25, 161–171.
(8) Thun, M. J.; Henley, S. J.; Pairono, C. Nonsteroidal anti-inflammatory
drugs as anticancer agents: mechanistic, pharmacologic, and clini-
cal issues. J. Natl. Cancer Inst. 2002, 94, 252–266.
(9) Soh, J.-W.; Kazi, J. V.; Li, H.; Thompson, W. J.; Weinstein, B.
Celcoxib-induced growth inhibition in SW480 colon cancer cells is
associated with activation of protein kinase G. Mol. Carcinog.
2008, 47, 519–525.
(10) Harris, R. E.; Beebe-Donk, J.; Doss, H.; Burr-Doss, D. Aspirin,
ibuprofen, and other non-steroidal anti-inflammatory drugs in
cancer prevention: a critical review of non-selective COX-2 block-
ade (review). Oncol. Rep. 2005, 13, 559–583.
(11) Arber, N.; Levin, B. Chemoprevention of colorectal neoplasia: the
potential for personalized medicine. Gastroenterology 2008, 134,
1224–1237.
(12) Williams, J. L.; Borgo, S.; Hasan, I.; Castillo, E.; Traganos, F.;
Rigas, B. Nitric oxide-releasing nonsteroidal anti-inflammatory
drugs (NSAIDs) alter the kinetics of human colon cancer cell lines
more effectively than traditional NSAIDs: implications for colon
cancer chemoprevention. Cancer Res. 2001, 61, 3285–3289.
(13) Robak, P.; Smolewski, P.; Robak, T. The role of non-steroidal anti-
inflammatory drugs in the risk of development and treatment of
hematologic malignances. Leuk. Lymphoma 2008, 49, 1452–1462.
(14) Chen, L. C.; Ashcroft, D. M. Risk of myocardial infarction
associated with selective COX-2 inhibitors: meta-analysis of ran-
domised controlled trials. Pharmacoepidemiol. Drug Saf. 2007, 16,
762–772.
water is approximated by ΔGbind =ΔEGAS þ ΔGGB þ ΔGSUR
.
The ΔEGAS is the energy difference of the solutes in the two
(bound and unbound) states. The ΔGGB is the polar part of the
solvation free energy represented by the generalized Born
approach. The ΔGSUR is the apolar surface part of the free
energy solvation of a cavity inside the solvent). In this formula,
the conformational entropy of the solute is not explicitly con-
sidered, although the solvent entropy is implicitly considered in
the ΔGGB and ΔEGAS
.
The electrostatic term is computed by adding the solvent
screened electrostatic interaction between ligand and enzyme,
and the corresponding change in the desolvation free energy of
the ligand upon binding. According to this procedure, the
desolvation cost of the enzyme is assumed to be common for
all complexes between COX-2 and inhibitors, which is justified
by the fact that all of them share a common chemical skeleton
and occupy the same position in the binding site while providing
a substantial saving in computer time.
MM-GBSA computations were performed for a set of 100
structures of the enzyme-inhibitor complex taken from the last
2 ns of the MD simulation and were obtained using the Amber
package. Prior to the calculations, the complexes were energy-
minimized to eliminate bad contacts; at the end all water mole-
cules were removed. The relative binding affinity was deter-
mined from the most favorable binding free energies determined
for each inhibitor.
Acknowledgment. The authors express their sincere grati-
tude to the Ministerio de Ciencia y Tecnologı
CTQ2007-60614/BQU) and the Departament d’Universitats,
´
a (Grant
ꢁ
Recerca i Societat de la Informacio de la Generalitat de
(15) Peri, K. G.; Hardy, P.; Li, D. Y.; Varma, D. R.; Chemtob, S.
Prostaglandin G/H synthase-2 is a major contributor of brain
prostaglandins in the newborn. J. Biol. Chem. 1995, 270, 24615–
24620.
Catalunya, Spain (Grant 2005-SGR-00180), for the financial
support. J.B. acknowledgesthe Generalitat deCatalunya for a
predoctoral fellowship.
(16) Capilla, A. S.; Pujol, M. D. A convenient method for the prepara-
tion of substituted naphtho[2,3-b]-1,4-dioxin by the Diels-Alder
reaction. Synth. Commun. 1996, 26, 1729–1738.
Supporting Information Available: Dipole moments (Figure
2A-C), molecular modeling studies (Figure 6-8), and the
preparation of organic compounds. This material is available
ꢁ
(17) Vazquez, M. T.; Rosell, G.; Pujol, M. D. Synthesis and anti-
inflammatory activity of rac-2-(2,3-dihydro-1,4-benzodioxin)pro-
pionic acid and its R and S enantiomers. Eur. J. Med. Chem. 1997,
32, 529–534 and references cited herein.
(18) Hamdouchi, C.; de Blas, J.; Ezquerra, J. A novel application of the
Ullmann coupling reaction for the alkylsulfenylation of 2-amino-
imidazo[1,2-a]pyridine. Tetrahedron 1999, 55, 541–552.
(19) Lindley, J. Copper-assisted nucleophilic substitution of aryl halo-
gen. Tetrahedron 1984, 40, 1433–1438.
References
(1) (a) Bertolini, A.; Ottani, A.; Sandrini, M. Selective COX-2 inhibi-
tors and dual anti-inflammatory drugs: critical remarks. Curr.
Med. Chem. 2002, 9, 1033–1043. (b) Howardell, M. J., Ed. COX-2
Inhibitor Research; Nova Science: New York, 2006. (c) Yu, G.; Praveen
Rao, P. N.; Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.;
ꢁ
(20) Sanchez, I.; Pujol, M. D. A convenient synthesis of pyrrolo[2,1-
c][1,4]benzodioxines. Tetrahedron 1999, 55, 5593–5598.
(21) Romero, M.; Harrak, Y.; Basset, J.; Ginet, L.; Constans, P.; Pujol,
M. D. Preparation of N-arylpiperazines and other N-aryl com-
pounds from aryl bromides as scaffolds of bioactive compounds.
Tetrahedron 2006, 62, 9010–9016.
ꢁ
Velazquez, C. A.; Suresh, M. R.; Knaus, E. E. Synthesis and biological
evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid
regioisomers: dual inhibitors of cyclooxygenases and 5-lipoxygenase.
Bioorg. Med. Chem. Lett. 2010, 20, 2168–2173. (d) Chowdhury,
M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus,
E. E. Synthesis of celecoxib analogues possessing a N-difluoromethyl-
1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: biological
evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase
with anti-inflammatory activity. J. Med. Chem. 2009, 52, 1525–1529.
(2) (a) Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors;current
status and future prospects. Eur. J. Med. Chem. 2001, 36, 109–126.
ꢁ
ꢁ
(22) Lozano, J. J.; Lopez, M.; Ruiz, J.; Vazquez, I. J.; Pouplana, R.
QSAR in the Nonsteroidal Antiinflammatory Agents: The Fena-
mic Acids. Trends in QSAR and Molecular Modelling 92; Wermuth,
C. G., Ed.; ESCOM: Leiden, The Netherlands, 1993; pp 560-61.
(23) Limongelli, V.; Bonomi, M.; Marinelli, L.; Gervasio, F. L.; Cavalli,
A.; Novellino, E.; Parrinello, M. Molecular basis of cyclooxy-
genase enzymes (COXs) selective inhibition. Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 5411–5416.
ꢁ
(b) Puig, C.; Crespo, M. I.; Godessart, N.; Feixas, J.; Ibarzo, J.; Jimenez,
(24) Waskewich, C.; Blumenthal, R. D.; Li, H.; Stein, R.; Goldenberg,
D. M.; Burton, J. Celecoxib exhibits the greatest potency amongst
cyclooxigenase (COX) inhibitors for growth inhibition of COX-2
negative hemapoietic and epithelial cell lines. Cancer Res. 2002, 62,
2029–2033.
J. M.; Soca, L.; Cardelus, I.; Heredia, A.; Miralpeix, M.; Puig, J.; Beleta,
J.; M. Huerta, J. M.; Lopez, M.; Segarra, V.; Ryder, H.; Palacios, J. M.
Synthesis and biological evaluation of 3,4-diaryloxazolones: a new
class of orally active cyclooxygenase-2 inhibitors. J. Med. Chem.
2000, 43, 214–223. (c) Kiefer, W.; Dannhardt, G. Novel insights and
therapeutical applications in the field of inhibitors of COX-2. Curr.
Med. Chem. 2004, 11, 3147–3161.
ꢁ
(25) Giles, J. F.; Kantarjian, H. M.; Bekele, B. N.; Cortes, J. E.; Faderl,
S.; Thomas, D. T.; Manshouri, T.; Rogers, A.; Keating, M. J.;