tions used previously for addition of O-nucleophiles.9 As it
was shown previously, dehydrohalogenation of 5a produces
a highly unstable conjugate cyclopropene i, which decom-
poses rapidly unless intercepted with a nucleophile.19 To our
delight, trapping of i with NMA proceeded efficiently
affording high yield of trans-diamide 6aa (eq 3).
As a part of an ongoing program aimed at expanding the
range of nucleophilic entities pertinent to this transformation,
we herein report a method for incorporation of a nitrogen
moiety in the three-membered ring, which allows for direct
access to ꢀ-ACC derivatives. While diastereoselective trans-
fer of transition metal carbenoids generated from diazocom-
pounds to enamines remains a challenging task,11 ꢀ-ACC
cores are usually accessed via Michael-initiated ring closure
reactions12 or [2 + 1]-cyclopropanation of acrylates with
R-nitrodiazoacetates,13 followed by appropriate functional
group transformations. At the same time, approaches that
allow direct and efficient installation of amine function in a
pre-existing three-membered ring remain scarce.14,15 Several
previously reported attempts on the addition of such nucleo-
philes to cyclopropenes resulted in cleavage of the small
ring.16
We started by probing a series of different amines as
N-pronucleophiles; however, our attempts to induce addition
of diethylamine, diphenylamine, N-ethylaniline, N-tosylbu-
tylamine, and phthalimide met with no success.17 In contrast,
nucleophilic attack by N-methylacetamide (NMA, 4a) on the
generated in situ but isolable 3-methyl-3-phenylcyclopropene
(2a) afforded trans-cyclopropylamine derivative 3aa in good
yield and high diastereoselectivity, which was controlled by
steric factors (eq 2).8,18 Encouraged by these results, we
tested 1,2-elimination of bromocyclopropane 5a under condi-
Further screening of various N-alkyl alkylcarboxamides
against bromocyclopropylcarboxamide 5a revealed an ad-
verse steric effect. Thus, introduction of a primary alkyl
substituent in both N- and C-termini of an amide 4b resulted
in a notable yield drop (Table 1, entry 2). Pronucleophiles
(11) For discussion, see: (a) Miller, J. A.; Hennessy, E. J.; Marshall,
W. J.; Scialdone, M. A.; Nguyen, S. T. J. Org. Chem. 2003, 68, 7884. For
development of diastereoselective protocols, see: (b) Sladojevich, F.;
Trabocchi, A.; Guarna, A. Org. Biomol. Chem. 2008, 6, 332. (c) Denton,
J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787. (d) Bonge, H. T.; Pintea,
B.; Hansen, T. Org. Biomol. Chem. 2008, 6, 3670.
Table 1. Steric Effect in the Formal Substitution of
Bromocyclopropane 5a with Secondary Amides
(12) See for example: (a) Inokuma, T.; Sakamoto, S.; Takemoto, Y.
Synlett 2009, 1627. (b) Fan, R.; Ye, Y.; Li, W.; Wang, L. AdV. Synth. Catal.
2008, 350, 2488. (c) Zhang, J.; Hu, Z.; Dong, L.; Xuan, Y.; Lou, C.-L.;
Yan, M. Tetrahedron: Asymmetry 2009, 20, 355. (d) Lv, J.; Zhang, J.; Lin,
Z.; Wang, Y. Chem.sEur. J. 2009, 15, 972.
(13) See for example Zhu, S.; Perman, J. A.; Zhang, X. P. Angew. Chem.,
Int. Ed. 2008, 47, 8460.
(14) For ring-retentive nucleophilic addition of amines to cyclopropenes,
see: (a) Gritsenko, E. I.; Khaliullin, R. R.; Plemenkov, V. V.; Faizullin,
E. M. Zh. Obshch. Khim. 1988, 58, 2733. (b) Franck-Neumann, M.; Miesch,
M.; Kempf, H. Tetrahedron 1988, 44, 2933. For nucleophilic displacement
of halogen in cyclopropyl halides with N-heterocycles, amides, and
sulfamides, see: (c) Kang, S. Y.; Lee, S.-H.; Seo, H. J.; Jung, M. E.; Ahn,
K.; Kim, J.; Lee, J. Bioorg. Med. Chem. Lett. 2008, 18, 2385. (d) Basle,
E.; Jean, M.; Gouault, N.; Renault, J.; Uriac, P. Tetrahedron Lett. 2007,
48, 8138. (e) Liang, G.-B.; Qian, X.; Feng, D.; Biftu, T.; Eiermann, G.;
He, H.; Leiting, B.; Lyons, K.; Petrov, A.; Sinha-Roy, R.; Zhang, B.; Wu,
J.; Zhang, X.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
no.
R1
R2
NuH
producta
yield, %b
drc
1
2
3
4
5
6
7
8
Me
Me
n-Bu
i-Pr
n-Bu
t-Bu
n-Bu
Me
4a
4b
4c
4d
4e
4f
6aa
6ab
6ac
6ad
6ae
6af
88
51
11:1
25:1
25:1
17:1
-
-
>25:1
>25:1
n-Pr
n-Pr
i-Pr
n-Bu
t-Bu
Ph
28d
31d
NR
NR
75
2007, 17, 1903
.
4g
4h
6ag
6ah
(15) For ring retentive installation of phosphorous-based nucleophilic
moiety into pre-existing three-membered cycle, see: Alnasleh, B. K.; Sherrill,
Ph
n-Bu
72
a Reactions performed in 0.5 mmol. b Isolated yields of diastereomeric
mixtures unless specified otherwise. c dr (trans:cis) determined by GC or
1H NMR analysis of crude reaction mixtures. d NMR yields determined by
analysis of a crude reaction mixture. Bromocyclopropane 5a was consumed
completely.
W. M.; Rubin, M. Org. Lett. 2008, 10, 3231
.
(16) (a) Yang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. W. Angew.
Chem., Int. Ed. 2008, 47, 7350. (b) Ma, S. Pur. Appl. Chem. 2008, 80,
695. (c) Chen, J.; Maz, S. J. Org. Chem. 2009, 74, 5595. (d) Ma, S.; Zhang,
J.; Lu, L.; Jin, X.; Cai, Y.; Hou, H. Chem. Commun. 2005, 909. (e) Ma, S.;
Zhang, J.; Cai, Y.; Lu, L. J. Am. Chem. Soc. 2003, 125, 13954. (f)
Nakamura, I.; Bajracharya, G. B.; Yamamoto, Y. J. Org. Chem. 2003, 68,
2297.
(17) It is believed that a fine balance between acidity and nucleofilicity
of the pronucleophile is essential for the successful transformation. See ref
9 for discussion.
bearing a secondary alkyl substituent at either terminus (2c,d)
provided poor yields (entries 3,4), whereas t-Bu-substituted
Org. Lett., Vol. 12, No. 18, 2010
3969