6774
C. Coppola et al. / Tetrahedron 66 (2010) 6769e6774
purified by column chromatography. Eluting the column with
CH2Cl2 containing growing amounts of CH3OH (from 0 to 5%), in
the presence of a few drops of triethylamine, gave pure desired
compound 6 (400 mg, 0.53 mmol) in 95% yields.
References and notes
1. Molotov, Y. A. Macrocyclic Compounds in Analytical Chemistry; John Wiley &
Sons: New York, NY, 1997 and literature cited therein.
2. For example, see: Yongzhu, J.; Hirose, K.; Nakamura, T.; Nishioka, R.; Ueshige, T.;
Tobe, Y. J. Chromatogr., A 2006, 1129, 201e207.
3. For a review, see: (a) Miethchen, R.; Fehring, V. Liebigs Ann. 1997, 553e561; For
more recent examples, see: (b) Yamanoi, T.; Oda, Y.; Muraishi, H.; Matsuda, S.
Molecules 2008, 13, 1840e1845; (c) Bakó, P.; Makó, A.; Keglevich, G.; Menyhárt,
D. K.; Sefcsik, T.; Fekete, J. J. Inclusion Phenom. Macrocyclic Chem. 2006, 55,
295e302.
4. Larpent, C.; Laplace, A.; Zemb, T. Angew. Chem., Int. Ed. 2004, 43, 3163e3167.
5. Morin, G. T.; Smith, B. D. Tetrahedron Lett. 1996, 37, 3101e3104.
6. Dessolin, J.; Galea, P.; Vlieghe, P.; Chermann, J.-C.; Kraus, J.-L. J. Med. Chem. 1999,
42, 229e241.
Compound 6: oil, Rf¼0.3 [CH2Cl2/CH3OH, 95:5 (v/v)]. 1H NMR
(CDCl3, 500 MHz):
d
8.09 (1H, d, J¼8.0 Hz, H-6); 7.92e6.83 (13H,
overlapped signals, aromatic protons); 5.94 (1H, br s, H-10); 5.29
(1H, d, J¼8.0 Hz, H-5); 4.35 (1H, m, H-30); 4.23e4.21 (2H, br s, H-20
and
H-40);
3.96e3.59
(20H, overlapped signals,
5ꢂ
(OeCH2eCH2eO)); 3.79 (6H, s, 2ꢂ(OCH3)); 3.56e3.45 (2H, m, H2-
50). 13C NMR (CDCl3, 125 MHz):
d
162.7 (C-4); 149.6 (C-2); 144.3 (C-
6); 158.5, 140.2, 135.2, 135.0, 130.0, 129.4, 128.0, 127.9, 127.0 and
113.1 (aromatic carbons); 101.7 (C-5); 88.3 (C-10); 86.8 (quaternary
carbon of DMT group); 81.0 (C-40); 80.8 (C-20); 75.4 (C-30); 70.6,
70.4, 70.3, 69.7 and 69.4 (5ꢂ(OeCH2eCH2eO)); 60.7 (C-50); 55.1
(OCH3 of DMT group). MALDI-MS (positive ions): calcd for
C40H48N2O12, 748.3207; m/z, found 468.49 ([(MꢄDMT)þNa]þ, 100);
484.45 ([(MꢄDMT)þK]þ, 30). HRMS (ESI-MS, positive ions): calcd
for C40H48N2O12Na, 771.3105; m/z, found 771.3119 [MþNa]þ.
7. Rohr, K.; Vogel, S. ChemBioChem 2006, 7, 463e470.
8. Milecki, J.; Schroeder, G. Pol. J. Chem. 2005, 79, 1781e1785.
9. Malek, K.; Podstawka, E.; Milecki, J.; Schroeder, G.; Proniewicz, L. M. Biophys.
Chem. 2009, 142, 17e26.
10. For recent reviews, see: (a) Modified Nucleosides; Herdewijn, P., Ed.; Wiley-VCH:
Weinheim, Germany, 2008; (b) Mathè, C.; Perigaud, C. Eur. J. Org. Chem. 2008, 9,
1489e1505; (c) Len, C.; Mondon, M.; Lebreton, J. Tetrahedron 2008, 64,
7453e7475; (d) Ichikawa, E.; Kato, K. Curr. Med. Chem. 2001, 8, 385e423; For
recent articles on conformationally constrained uridine or thymidine ana-
logues, see for example: (e) Enderlin, G.; Taillefumier, C.; Didierjean, C.;
Chapleur, Y. J. Org. Chem. 2009, 74, 8388e8391; (f) Mieczkowski, A.; Blu, J.; Roy,
V.; Agrofoglio, L. A. Tetrahedron 2009, 65, 9791e9796; (g) Bonache, M.-C.;
Cordeiro, A.; Carrero, P.; Quesada, E.; Camarasa, M.-J.; Jimeno, M.-L.; San-Felix,
A. J. Org. Chem. 2009, 74, 9071e9081.
11. (a) Herdewijn, P. Biochim. Biophys. Acta 1999, 1489, 167e179; (b) Cobb, A. J. A.
Org. Biomol. Chem. 2007, 5, 3260e3275; (c) Kaur, H.; Babu, B. R.; Maiti, S. Chem.
Rev. 2007, 107, 4672e4697.
12. Coppola, C.; D’Onofrio, J.; De Napoli, L.; Di Fabio, G.; Montesarchio, D. Nucleic
Acids Symp. Ser. 2008, 52, 667e668.
13. D’Onofrio, J.; De Napoli, L.; Di Fabio, G.; Montesarchio, D. Synlett 2006,
845e848.
14. (a) Blackburn, B. J.; Grey, A. A.; Smith, I. C. P.; Hruska, F. E. Can. J. Chem. 1970, 48,
2866e2870; (b) Neumann, J. M.; Bernassau, J. M.; Gukron, M.; Tran-Dinh, S. Eur.
J. Biochem. 1980, 108, 457e463.
15. Altona, C. Recl. Trav. Chim. Pays-Bas 1982, 101, 413e433.
16. Sejo, K.; Tawarada, R.; Sasami, T.; Serizawa, M.; Ise, M.; Ohkubo, A.; Sekine, M.
Bioorg. Med. Chem. 2009, 17, 7275e7280.
17. Coppola, C.; Virno, A.; De Napoli, L.; Randazzo, A.; Montesarchio, D. Tetrahedron
2009, 65, 9694e9701 and literature cited therein.
18. Competitive binding assays carried out by ESI-MS gave indirect, but clear
support to this hypothesis. When 7 was analyzed in bidistilled water, [MþNa]þ
was the prevailing m/z signal (100%), with [MþK]þ as the unique accompanying
ion (60%). When dissolved in a 0.1 M KCl solution, exclusively [MþK]þ was
observed, thus showing complete displacement of sodium by potassium ion,
with known higher affinity for 18-crown-6 moiety. On the contrary, when
dissolved in 0.1 M triethylammonium bicarbonate, [MþEt3NH]þ could not be
detected, even in traces, and [MþNa]þ and [MþK]þ were found almost in the
same ratio as in pure water. Since the big triethylammonium ion cannot dis-
place sodium or potassium, this result points to a ca. 100% complexation of the
crown ether and almost complete absence of unbound molecules, and can be
taken as an indirect evidence of the presence of sodium (and, in minor per-
centage, of potassium) fully complexing the crown ether ring in 7.
19. For a review on bicyclic nucleoside analogues, see: Meldgaard, M.; Wengel, J.
J. Chem. Soc., Perkin Trans. 1 2000, 21, 3539e3554.
5.3.5. Synthesis of 7. Compound
6 (50 mg, 0.067 mmol) was
treated with a 1% TFA solution in CH2Cl2 (v/v, 1 mL total volume)
under stirring at room temperature for 1 h. The reaction mixture
was then concentrated under reduced pressure, redissolved in
diethyl ether and washed twice with distilled water. The aqueous
phase was concentrated under reduced pressure and purified on
a Sephadex G25 column eluted with H2O/EtOH, 4:1 (v/v). From UV
spectrophotometric measurements, fractions absorbing at
l
¼264 nm were collected and taken to dryness, yielding pure 7
(24 mg, 0.053 mmol) with 80% yields.
Compound 7: colourless oil, Rf¼0.3 [CH2Cl2/CH3OH, 7:3 (v/v)]. 1H
NMR (D2O, 700 MHz, 25 ꢀC):
d
7.90 (1H, d, J¼8.0 Hz, H-6); 6.09 (1H,
d, J¼3.0 Hz, H-10); 5.89 (1H, d, J¼8.0 Hz, H-5); 4.32 (1H, dd, J¼5.3
and 3.0 Hz, H-20); 4.23 (1H, m, H-40); 4.12 (1H, dd, J¼5.3 and 6.0 Hz,
H-30); 3.97 (1H, AB part of an ABX system, J¼3.0 and 12.0 Hz, H-5a );
0
0
3.83 (1H, m, H-5b ); 3.80e3.69 (20H, overlapped signals, 5ꢂ
(OeCH2eCH2eO)). 13C NMR (D2O, 125 MHz):
d 161.7 (C-4); 152.0
(C-2); 143.4 (C-6); 104.8 (C-5); 90.5 (C-10); 84.3 (C-40); 82.4 (C-20);
78.6 (C-30); 72.4, 72.3, 72.1, 72.0, 71.8 and 71.7 (5ꢂ
(OeCH2eCH2eO)); 63.0 (C-50). MALDI-MS (positive ions): calcd for
C19H30N2O10, 446.1900; m/z, found 468.90 ([MþNa]þ, 100); 484.85
([MþK]þ, 25). HRMS (ESI-MS, positive ions): calcd for
C19H30N2O10Na, 469.1798; m/z, found 469.1821 [MþNa]þ.
Acknowledgements
20. Jeener, J.; Meier, B.; Bachmann, H. P.; Ernst, R. R. J. Chem. Phys. 1979, 71,
4546e4553.
We thank MIUR (PRIN) for grants in support of this investigation
and Centro di Metodologie Chimico-Fisiche (CIMCF), Università di
Napoli ‘Federico II’, for the MS and NMR facilities. We also thank Dr.
Jan Balzarini, from Rega Institute for Medical Research, Katholieke
Universiteit Leuven, Leuven, Belgium, for the antiviral experiments.
21. Braunschweiler, L.; Ernst, R. R. J. Magn. Reson. 1983, 53, 521e528.
22. Marion, D.; Wuthrich, K. Biochem. Biophys. Res. Commun. 1983, 113, 967e974.
23. Kay, L. E.; Keifer, P.; Saarinen, T. J. Am. Chem. Soc. 1992, 114, 10663e10665.
24. Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093e2094.
25. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.;
Profeta, S.; Weiner, P. J. J. Am. Chem. Soc. 1984, 106, 765e784.