118
X. Zheng, J.E. Polli / International Journal of Pharmaceutics 396 (2010) 111–118
Balakrishnan, A., Polli, J.E., 2006. Apical sodium dependent bile acid transporter
(ASBT, SLC10A2): a potential prodrug target. Mol. Pharm. 3, 223–230.
Balakrishnan, A., Sussman, D.J., Polli, J.E., 2005. Development of stably transfected
monolayer overexpressing the human apical sodium-dependent bile acid trans-
porter (hASBT). Pharm. Res. 22, 1269–1280.
Balakrishnan, A., Wring, S.A., Coop, A., Polli, J.E., 2006a. Influence of charge and
steric bulk in the C-24 region on the interaction of bile acids with human apical
sodium-dependent bile acid transporter. Mol. Pharm. 3, 282–292.
Balakrishnan, A., Wring, S.A., Polli, J.E., 2006b. Interaction of native bile acids
with human apical sodium-dependent bile acid transporter (hASBT): influ-
ence of steroidal hydroxylation pattern and C-24 conjugation. Pharm. Res. 23,
1451–1459.
Kramer, W., Wess, G., Schubert, G., Bickel, M., Girbig, F., Gutjahr, U., Kowalewski, S.,
Baringhaus, K.H., Enhsen, A., Glombik, H., 1992. Liver-specific drug targeting by
coupling to bile acids. J. Biol. Chem. 267, 18598–18604.
Larsen, C., Jensen, B.H., Olesen, H.P., 1991. Bioavailability of ketoprofen from orally
administered ketoprofen–dextran ester prodrugs in the pig. Acta Pharm. Nord.
3, 71–76.
Menon, R.M., Gonzalez, M.A., Adams, M.H., Tolbert, D.S., Leu, J.H., Cefali, E.A., 2007.
Effect of the rate of niacin administration on the plasma and urine pharmacoki-
netics of niacin and its metabolites. J. Clin. Pharmacol. 47, 681–688.
Montagnani, M., Love, M.W., Rossel, P., Dawson, P.A., Qvist, P., 2001. Absence of
dysfunctional ileal sodium-bile acid cotransporter gene mutations in patients
with adult-onset idiopathic bile acid malabsorption. Scand. J. Gastroenterol. 36,
1077–1080.
Morgan, J.M., Capuzzi, D.M., Guyton, J.R., 1998. A new extended-release niacin (Nias-
pan): efficacy, tolerability, and safety in hypercholesterolemic patients. Am. J.
Cardiol. 82, 29U–34U.
Balimane, P.V., Tamai, I., Guo, A., Nakanishi, T., Kitada, H., Leibach, F.H., Tsuji, A., Sinko,
P.J., 1998. Direct evidence for peptide transporter (PepT1)-mediated uptake
of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250,
246–251.
Benyo, Z., Gille, A., Kero, J., Csiky, M., Suchankova, M.C., Nusing, R.M., Moers, A.,
Pfeffer, K., Offermanns, S., 2005. GPR109A (PUMA-G/HM74A) mediates nicotinic
acid-induced flushing. J. Clin. Invest. 115, 3634–3640.
Oelkers, P., Kirby, L.C., Heubi, J.E., Dawson, P.A., 1997. Primary bile acid malabsorp-
tion caused by mutations in the ileal sodium-dependent bile acid transporter
gene (SLC10A2). J. Clin. Invest. 99, 1880–1887.
Burnette, T.C., de, M.P., 1994. Metabolic disposition of the acyclovir prodrug valaci-
clovir in the rat. Drug Metab. Dispos. 22, 60–64.
Cordi, A., Lacoste, J.M., Duhault, J., Espinal, J., Boulanger, M., Broux, O., Husson, B.,
Volland, J.P., Mahieu, J.P., 1995. Synthesis of 1,2-diacyl-3-nicotinoyl glycerol
derivatives and evaluation of their acute effects on plasma lipids in the rat.
Arzneimittelforschung 45, 997–1001.
Dawson, P.A., Haywood, J., Craddock, A.L., Wilson, M., Tietjen, M., Kluckman, K.,
Maeda, N., Parks, J.S., 2003. Targeted deletion of the ileal bile acid trans-
porter eliminates enterohepatic cycling of bile acids in mice. J. Biol. Chem. 278,
33920–33927.
Dawson, P.A., Lan, T., Rao, A., 2009. Bile acid transporters. J. Lipid Res..
Dawson, P.A., Oelkers, P., 1995. Bile acid transporters. Curr. Opin. Lipidol. 6, 109–114.
Filip, C., Ungureanu, D., Gheorghita, N., Ghitler, N., Mocanu, G., Nechifor, M., 2003.
Hypolipidemic effect of a prodrug containing nicotinic acid in rats. Correlation
with plasmatic levels. Rev. Med. Chir. Soc. Med. Nat. Iasi 107, 179–183.
Gallop, M.A., Cundy, K.C. Bile-acid conjugates for providing sustained systemic
concentrations for drugs. PCT/US01/42628. 11-4-2002a. WO 02/28883 A1. 9-
10-2001a. Ref. type: Patent.
Petzinger, E., Nickau, L., Horz, J.A., Schulz, S., Wess, G., Enhsen, A., Falk, E., Baring-
haus, K.H., Glombik, H., Hoffmann, A., 1995. Hepatobiliary transport of hepatic
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors conjugated with
bile acids. Hepatology 22, 1801–1811.
Petzinger, E., Wickboldt, A., Pagels, P., Starke, D., Kramer, W., 1999. Hepatobiliary
transport of bile acid amino acid, bile acid peptide, and bile acid oligonucleotide
conjugates in rats. Hepatology 30, 1257–1268.
Pieper, J.A., 2002. Understanding niacin formulations. Am. J. Manag. Care 8,
S308–S314.
Pieper, J.A., 2003. Overview of niacin formulations: differences in pharmacokinetics,
efficacy, and safety. Am. J. Health Syst. Pharm. 60, S9–14.
Piepho, R.W., 2000. The pharmacokinetics and pharmacodynamics of agents proven
to raise high-density lipoprotein cholesterol. Am. J. Cardiol. 86, 35L–40L.
Pike, N.B., 2005. Flushing out the role of GPR109A (HM74A) in the clinical efficacy
of nicotinic acid. J. Clin. Invest. 115, 3400–3403.
Porter, R.S., Kaplan, L.J., 2009. The Merck Manuals Online Medical Library. Merck
Research Laboratories, Division of Merck & Co., Inc., Whitehouse Station, NJ.
Rais, R., Gonzalez, P.M., Zheng, X., Wring, S.A., Polli, J.E., 2008. Method to screen sub-
strates of apical sodium-dependent bile acid transporter. AAPS J. 10, 596–605.
St-Pierre, M.V., Kullak-Ublick, G.A., Hagenbuch, B., Meier, P.J., 2001. Transport of bile
acids in hepatic and non-hepatic tissues. J. Exp. Biol. 204, 1673–1686.
Stern, R.H., Freeman, D., Spence, J.D., 1992. Differences in metabolism of time-release
and unmodified nicotinic acid: explanation of the differences in hypolipidemic
action? Metabolism 41, 879–881.
Gallop, M.A., Cundy, K.C. Bile-acid derived compounds for providing sustained
systemic concentrations of drugs after oral administration. PCT/US01/42513.
11-4-2002b. WO 02/28881 A1 Ref. type: Patent.
Gonzalez, E.L., Patrignani, P., Tacconelli, S., Rodriguez, L.A., 2010. Variability of risk of
upper gastrointestinal bleeding among nonsteroidal anti-inflammatory drugs.
Arthritis Rheum..
Gonzalez, P., Polli, J.E., 2008. Impact of impurity on kinetic estimates from transport
and inhibition studies. J. Pharmacol. Exp. Ther. 326, 296–305.
Han, H., de Vrueh, R.L., Rhie, J.K., Covitz, K.M., Smith, P.L., Lee, C.P., Oh, D.M., Sadee,
W., Amidon, G.L., 1998. 5ꢂ-Amino acid esters of antiviral nucleosides, acyclovir,
and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res.
15, 1154–1159.
Tantishaiyakul, V., Wiwattanawongsa, K., Pinsuwan, S., Kasiwong, S., Phadoong-
sombut, N., Kaewnopparat, S., Kaewnopparat, N., Rojanasakul, Y., 2002.
Characterization of mefenamic acid-guaiacol ester: stability and transport
across Caco-2 cell monolayers. Pharm. Res. 19, 1013–1018.
Tolle-Sander, S., Lentz, K.A., Maeda, D.Y., Coop, A., Polli, J.E., 2004. Increased acyclovir
oral bioavailability via a bile acid conjugate. Mol. Pharm. 1, 40–48.
Wang, L.F., Chiang, H.N., Wu, P.C., 2002. Kinetics and hydrolysis mechanism of poly-
meric prodrugs containing ibuprofen, ketoprofen, and naproxen as pendent
agents. J. Biomater. Sci. Polym. Ed. 13, 287–299.
Wong, M.H., Oelkers, P., Dawson, P.A., 1995. Identification of a mutation in the ileal
sodium-dependent bile acid transporter gene that abolishes transport activity.
J. Biol. Chem. 270, 27228–27234.
Wong, M.H., Rao, P.N., Pettenati, M.J., Dawson, P.A., 1996. Localization of the ileal
sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33.
Genomics 33, 538–540.
Kantor, T.G., 1986. Ketoprofen: a review of its pharmacologic and clinical properties.
Pharmacotherapy 6, 93–103.
Knopp, R.H., Alagona, P., Davidson, M., Goldberg, A.C., Kafonek, S.D., Kashyap,
M., Sprecher, D., Superko, H.R., Jenkins, S., Marcovina, S., 1998. Equiva-
lent efficacy of a time-release form of niacin (Niaspan) given once-a-night
versus plain niacin in the management of hyperlipidemia. Metabolism 47,
1097–1104.
Kramer, W., Wess, G., 1996. Bile acid transport systems as pharmaceutical targets.
Eur. J. Clin. Invest. 26, 715–732.
Kramer, W., Wess, G., Enhsen, A., Bock, K., Falk, E., Hoffmann, A., Neckermann, G.,
Gantz, D., Schulz, S., Nickau, L., 1994. Bile acid derived HMG-CoA reductase
inhibitors. Biochim. Biophys. Acta 1227, 137–154.
Zheng, X., Ekins, S., Raufman, J.P., Polli, J.E., 2009. Computational models for drug
inhibition of the human apical sodium-dependent bile acid transporter. Mol.
Pharm. 6, 1591–1603.