1756
Z. Guerrab et al. / Tetrahedron: Asymmetry 21 (2010) 1752–1757
2.02 (s, 3H, CO–CH3), 1.98 (d, 2J = 13.6 Hz, 1H, (C-3)HaHb), 1.68 (d,
2J = 13.6 Hz, 1H, (C-3)HaHb), 1.14 (s, 3H, gem-CH3), 1.12 (s, 3H,
gem-CH3), 1.11 (s, 3H, (C-2)CH3). 13C NMR(75 MHz, CDCl3) d:
224.0 (C-1, C@O), 171.3 (C@O, ester), 70.1 (CH2–OAc), 55.0 (C-5),
52.1 (C-2), 39.5 (C-3), 30.3 (gem-CH3), 30.2 (gem-CH3), 21.5 (CH3–
CO), 17.4 (C-4), 16,4 ((C-2)CH3).
Acetate (ꢁ)-2e: Rf = 0.40 (PE/EE 50:50); ½a D20
¼ ꢁ12:5 (c 1.0,
ꢀ
CHCl3); ee = 99%. 1H NMR(300) MHz, CDCl3) d: 4.20 (d,
2J = 10.7 Hz, 1H, CHaHb–OAc), 4.02 (d, 2J = 10.7 Hz, 1H, CHaHb–
OAc), 2.10 (s, 1H, CO–CH3), 2.0–2.03 (m, 1H, C(5)HH), 1.55–1.85
(m, 1H + 4H, C(5)HH and 2 ꢃ CH2), 1.32 (t, 3J = 7.1 Hz, 2H,
C(2)CH2), 1.18 (m, 4H, 2 ꢃ CH2), 0.90 (t, 3J = 6.6 Hz, 3H, CH3).
Ketolcohol (ꢁ)-(S)-1a: ½a D20
ꢀ
¼ ꢁ79:1 (c 1.00, CHCl3), ee >99%.
Ketoalcohol (+)-1e: ½a D20
¼ þ11 (c 1.0, CHCl3); ee = 99%.
ꢀ
5.3.6. 2-Acetoxymethyl-2-methylcyclohexanone 4a27
Following the general transesterification procedure, a mixture
of b-ketoalcohol 3a (100 mg, 0.7 mmol), vinyl acetate (181 mg,
2.1 mmol), and lipase P. fluorescens AK (70 mg) in benzene (5 mL)
was stirred at 20 °C for 72 h. Purification by flash chromatography
gave the acetate 4a (56 mg, 44%) and the recovered alcohol 3a
(49 mg, 49%).
5.3.2. 2-Acetoxymethyl-2-methylcyclopentanone 2b
Following the general transesterification procedure, a mixture
of b-ketoalcohol 1b (657 mg, 5.13 mmol), vinyl acetate (1.32 g,
15.4 mmol), and the crude enzyme Amano PS (400 mg) in pentane
(40 mL) was stirred at 25 °C for 3 h. Purification by flash chroma-
tography gave the acetate 2b (402 mg, 46%) and the recovered
alcohol 1b (328 mg, 50%).
Acetate (+)-(R)-2b: Rf = 0.38 (PE/EE 50:50); ½a D20
¼ þ87:8 (c
ꢀ
Acetate (ꢁ)-(R)-4a: Rf = 0.44 (PE/EE 50:50); ½a D20
¼ ꢁ18 (c 1.09,
ꢀ
1.02, CHCl3), ee >99%. 1H NMR (300 MHz, CDCl3) d: 4.05 (d,
2J = 10.8 Hz, 1H, CHaHb–OAc), 3.45 (d, 2J = 10.8 Hz, 1H, CHaHb–
OAc), 2.2–2.4 (m, 2H, 5-H), 2.01 (s, 3H, CO–CH3), 1.7–1.8 (m, 4H,
4H, 3-H and 4-H), 1.01 (s, 3H, (C-2)CH3). 13C NMR(75 MHz, CDCl3)
d: 220.9 (C-1, C@O), 171.2 (C@O, ester), 68.2 (CH2–OAc), 48.6 (C-2),
38.3 (C-5), 33.7 (C-3), 21.2 (CH3–CO), 20.0 (CH3), 19.1 (C-4).
CHCl3); ee = 98%. 1H NMR (300 MHz, CDCl3) d: 4.20 (d, 2J = 11.1 Hz,
1H, CHaHb–OAc), 4.14 (d, 2J = 11.1 Hz, 1H, CHaHb–OAc), 2.42–2.45
(m, 1H, (C-6)HH), 2.06 (s, 3H, CO–CH3), 1.75–1.93 (m, 7H, (C-
6)HH and 3 ꢃ CH2), 1.17 (s, 3H, (C-2)CH3).
Ketoalcohol (+)-(S)-3a: ½a D20
¼ þ67 (c 1.01, CHCl3); ee = 82%.
ꢀ
Ketoalcohol (ꢁ)-(S)-1b: ½a D20
¼ ꢁ50:4 (c 1.0, CHCl3), ee = 82%
ꢀ
5.3.7. 2-Acetoxymethyl-2-benzylcyclohexanone 4b
Following the general transesterification procedure, a mixture
of b-ketoalcohol 3b (109 mg, 0.5 mmol), vinyl acetate (129 mg,
1.5 mmol), and lipase P. fluorescens AK (50 mg) in benzene (5 mL)
was stirred at 65 °C for 18 h. Purification by flash chromatography
gave the acetate 4b (59 mg, 45%) and the recovered alcohol 3b
(51 mg, 47%).
determined by gas chromatography using a Shimadzu GC-14A
chromatograph equipped with a chiral capillary column Cyclodex
btm (60 m ꢃ 0.25 mm ID ꢃ 0.25
l
film): N2 carrier gas
(ꢂ1 cm3 minꢁ1); temperature program from 40 °C to 200 °C at
5 °C minꢁ1; tR((+)-1b) = 30.5 min, and tR((ꢁ)-1b) = 31.2 min.
5.3.3. 2-Acetoxymethyl-2-benzylcyclopentanone 2c26
Following the general transesterification procedure, a mixture
of b-ketoalcohol 1c (120 mg, 0.59 mmol), vinyl acetate (152.2 mg,
1.77 mmol), and the enzyme P. fluorescens AK (59 mg) in benzene
(8 mL) was stirred at 25 °C for 48 h. Purification by flash chroma-
tography gave the acetate 2c (68 mg, 47%) and the recovered alco-
hol 1c (49 mg, 49%).
Acetate (ꢁ)-(S)-4b: Rf = 0.50 (PE/EE 50:50); ½a D20
¼ ꢁ19 (c 1.05,
ꢀ
CHCl3); ee = 98%. 1H NMR (300 MHz, CDCl3) d: 7.22–7.26 (m, 5H,
H
arom), 4.78 (d, 2J = 11.5 Hz, 1H, CHaHb–OAc), 4.51 (d, 2J = 11.5 Hz,
1H, CHaHb–OAc), 3.38 (d, 2J = 13.7 Hz, 1H, CHaHb–Ph), 3.10 (d,
2J = 13.7 Hz, 1H, CHaHb–Ph), 2.77 (t, 3J = 6.6 Hz, 2H, CH2–CO), 2.39
(s, 3H, CO–CH3), 1.90–1.96 (m, 6H, 3 ꢃ CH2).
Ketoalcohol (+)-(R)-3b: ½a D20
¼ þ40 (c 1.03, CHCl3); ee >99%.
ꢀ
Acetate (ꢁ)-2c: Rf = 0.40 (PE/EE 50:50); ½a D20
¼ ꢁ17 (c 1.1,
ꢀ
CHCl3); ee >99%. 1H NMR (300 MHz, CDCl3) d: 7.1–7.40 (m, 5H, Har-
om), 4.09 (s, 2H, CH2–OAc), 2.88 (d, 2J = 13.4 Hz, 1H, CHaHb–Ph),
2.69 (d, 2J = 13.4 Hz, 1H, CHaHb–Ph), 2.06 (s, 3H, CO–CH3), 1.50–
2.20 (m, 6H, 3 ꢃ CH2).
6. Synthesis of the pseudoiridolactones 6–7
The synthesis of the optically active pseudoiridolactones 6–7
was achieved as previously described for the racemic form of these
same pseudoiridolactones.1b The yields and the optical rotations
Ketoalcohol (+)-1c: ½a D20
¼ þ81:4 (c 1.00, CHCl3), ee >99%.
ꢀ
½
a 2D0
ꢀ
(ꢂ1, CHCl3) are given in Table 2. Their spectroscopic data
5.3.4. 2-Acetoxymethyl-2-allylcyclopentanone 2d
are all given in Ref. 1b.
Following the general transesterification procedure, a mixture
of b-ketoalcohol 1d (100 mg, 0.65 mmol), vinyl acetate
(167.7 mg, 1.95 mmol), and P. fluorescens AK (65 mg) in benzene
(6 mL) was stirred at 25 °C for 16 h. Purification by flash chroma-
tography gave the acetate 2d (60 mg, 47%) and the recovered alco-
hol 1d (49 mg, 49%).
Acknowledgments
We thank Université Claude Bernard-LYON and CNRS for finan-
cial support. One of us (Z. Guerrab) gratefully thanks the Région
Rhône-Alpes for a Ph.D. Fellowship (MIRA program). S. Schweiger
also thanks the European Erasmus program for a fellowship.
Acetate (ꢁ)-(S)-2d: Rf = 0.42 (PE/EE 50:50); ½a D20
¼ ꢁ19 (c 1.01,
ꢀ
CHCl3); ee = 99%. 1H NMR (300 MHz, CDCl3) d: 5.70 (ddt,
3
3Jtrans = 17.3 Hz, Jcis = 9.6 Hz, 1H, 3J = 7.5 Hz, CH@CH2), 5.13 (d,
3
4
3Jtrans = 17.3 Hz, 1H, C@CHH), 5.09 (dt, Jcis = 9.6 Hz, Jallyl = 1.0 Hz,
1H, C@CHH), 4.09 (d, 2J = 10.9 Hz, 1H, CHaHb–OAc), 4.03 (d, 2J =
10.9 Hz, 1H, CHaHb–OAc), 2.22–2.30 (m, 4H, CH2–CO and CH2–
CH@CH2), 2.10–2.20 (m, 4H, 2 ꢃ CH2), 2.03 (s, 3H, CO–CH3).
References
1. (a) Guerrab, Z.; Daou, B.; Fkih-Tetouani, S.; Ahmar, M.; Cazes, B. Tetrahedron
Lett. 2003, 44, 5727–5730; (b) Guerrab, Z.; Daou, B.; Fkih-Tetouani, S.; Ahmar,
M.; Cazes, B. Tetrahedron 2007, 63, 3367–3379.
Ketoalcohol (+)-(R)-1d: ½a D20
¼ þ38 (c 1.05, CHCl3); ee = 98%.
ꢀ
2. For recent examples in the literature, see: (a) Overman, L. E. Pure Appl. Chem.
1994, 66, 1423–1430; (b) Gotchev, D. B.; Copmins, D. L. J. Org. Chem. 2006, 71,
9393–9402; (c) Acherar, S.; Audran, G.; Cecchin, F.; Monti, H. Tetrahedron 2004,
60, 5907–5912; (d) Nicolau, K. C.; Gray, D. L. F. J. Am. Chem. Soc. 2004, 126, 607–
612; (e) Campbell, E. L.; Zuhl, A. M.; Liu, C. M.; Boger, D. L. J. Am. Chem. Soc.
2010, 132, 3009–3012; (f) Tonder, J. E.; Hosseini, M.; Ahrenst, A. B.; Tanner, D.
Org. Biomol. Chem. 2004, 2, 1447–1455; (g) Chandra, H.; Pigza, J. A.; Han, J.-S.;
Mutnick, D.; Johnston, J. N. J. Am. Chem. Soc. 2009, 131, 3470–3471.
5.3.5. 2-Acetoxymethyl-2-butylcyclopentanone 2e
Following the general transesterification procedure, a mixture
of b-ketoalcohol 1e (900 mg, 5.3 mmol), vinyl acetate (1.38 g,
15.9 mmol), and lipase Amano AK (530 mg) in benzene (50 mL)
was stirred at 25 °C for 17 h. Purification by flash chromatography
gave the acetate 2e (548 mg, 49%) and the recovered alcohol 1e
(433 mg, 48%).
3. For examples in the terpenoid area, see: (a) Drege, E.; Tominiaux, C.; Morgant,
G.; Desmaële, D. Eur. J. Org. 2006, 4825–4840; (b) Trost, B. M.; Dong, L.;
Schroeder, C. M. J. Am. Chem. Soc. 2005, 127, 10259–10268; (c) Yoda, H.;