C O M M U N I C A T I O N S
cornell.edu/jn96/outreach.html.
(3) For selected examples of 2-aminoaniline synthesis, see: (a) Wei, G. P.;
Phillips, G. B. Tetrahedron Lett. 1998, 39, 179. (b) Wei, G. P.; Phillips,
G. B. Tetrahedron Lett. 1996, 37, 4887.
(4) For reviews, see: (a) Lyons, T. W.; Sanford, M. S. Chem. ReV. 2010, 110,
1147. (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074. (d) Liegault, B.; Lapointe, D.; Caron, L.;
Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826. (e) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
J. Am. Chem. Soc. 2002, 124, 1586. (i) Tremont, S. J.; Rahman, H. U.
J. Am. Chem. Soc. 1984, 106, 5759. (j) Horino, H.; Inoue, N. J. Org. Chem.
1981, 46, 4416. (k) A recent example of Rh-catalyzed ortho-C-H bond
vinylation of simple anilides was also reported: Patureaum, F. W.; Glorius,
F. J. Am. Chem. Soc. 2010, 132, 9982.
(12) (a) Lebel, H.; Huard, K. Org. Lett. 2007, 9, 639. (b) Lebel, H.; Huard, K.;
Lectard, S. J. Am. Chem. Soc. 2005, 127, 14198.
(13) Greene’s ProtectiVe Groups in Organic Synthesis, 4th ed.; Wuts, P. G. M.,
Greene, T. W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007; pp
706-732. (a) The N-pivalyl group can be selectively deprotected by reflux
in MeOH with conc. HCl: Phipps, R. J.; Gaunt, M. J. Science 2009, 323,
1593. Selective deprotection of the ethoxy carbonyl group of the carbamate
function can be achieved using an alcoholic solution of NaOH at room
temperature. The N-Troc group can be selectively deprotected by zinc dust
in THF/H2O at room temperature.
(5) For selected examples, see: (a) Hull, K. L.; Sanford, M. S. J. Am. Chem.
Soc. 2007, 129, 11904. (b) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am.
Chem. Soc. 2007, 129, 9879. (c) Giri, R.; Maugel, N.; Li, J.-J.; Wang,
D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc.
2007, 129, 3510. (d) Shabashov, D.; Daugulis, O. Org. Lett. 2006, 8, 4947.
(e) Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211.
(14) Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem.
Soc. 2010, 132, 468.
(6) For reviews on metal-catalyzed aromatic C-H aminations, see: (a)
Armstrong, A.; Collins, J. C. Angew. Chem., Int. Ed. 2010, 49, 2282. (b)
Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061. (c) Davies,
H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(7) (a) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. 2010, 49, 5529.
(b) Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. J. Org. Chem. 2010, 75,
3900. (c) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,
10806. (d) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.;
Guant, M. J. J. Am. Chem. Soc. 2008, 130, 16184. (e) Wasa, M.; Yu, J.-Q.
J. Am. Chem. Soc. 2008, 130, 14058. (f) Li, J.-J.; Mei, T.-S.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2008, 47, 6452. (g) Tsang, W. C. P.; Zheng, N.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
(8) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
(9) For recent examples of Cu-catalyzed intermolecular C-H amination
reaction, see: (a) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am.
Chem. Soc. 2010, 132, 6900. (b) Zhao, H.; Wang, M.; Su, W.; Hong, M.
AdV. Synth. Catal. 2010, 352, 1301. (c) Wang, Q.; Schreiber, S. L. Org.
Lett. 2009, 11, 5178. (d) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori,
A. Org. Lett. 2009, 11, 1607. (e) A recent example of Ag-catalyzed C-H
amination was also reported: Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S.
Angew. Chem., Int. Ed. 2009, 48, 9127.
(10) (a) Chan, W.-W.; Yeung, S.-H.; Zhou, Z.; Chan, A. S.-C.; Yu, W.-Y. Org.
Lett. 2010, 12, 604. (b) Yu, W.-Y.; Sit, W. N.; Zhou, Z.; Chan, A. S.-C.
Org. Lett. 2009, 11, 3174. (c) Yu, W.-Y.; Tsoi, Y.-T.; Zhou, Z.; Chan,
A. S.-C. Org. Lett. 2009, 11, 469. (d) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.;
Zhou, Z.; Chan, A. S.-C. J. Am. Chem. Soc. 2008, 130, 3304. (e) Thu,
H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048.
(11) For selected examples of Pd-catalyzed ortho-C-H bond functionalizations
of anilides and arylureas, see: (a) Giri, R.; Lam, J. K.; Yu, J.-Q. J. Am.
Chem. Soc. 2010, 132, 686. (b) Rauf, W.; Thompson, A. L.; Brown, J. M.
Chem. Commun. 2009, 3874. (c) Houlden, C. E.; Hutchby, M.; Bailey,
C. D.; Gair Ford, J.; Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.;
Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2009, 48, 1830. (d) Yang,
S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066. (e) Wan,
X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem.
Soc. 2006, 128, 7416. (f) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int.
Ed. 2005, 44, 4046. (g) Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 4156. (h) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries,
A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M.
(15) Since both of the carbamate groups in the monoamidated products should
be able to direct further amidation to the arene ring, formation of
diamidation products should be possible. However, we did not observe
formation of any diamidation products under our experimental conditions.
Probably, the monoamidated products are less reactive for further palladation
than the substrate anilides. Moreover, employing only 1.2 equiv of the
N-nosyloxycarbamate would limit the chance for diamidation reactions.
(16) Intermolecular primary KIE (kH/kD) values of 2-5 have been reported for
Pd-catalyzed ortho-C-H activation of arenes. For selected examples, see:
(a) Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584. (b) Desai,
L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285.
Also see ref 11f, g, and 18a.
(17) For the synthesis of 1a-Pd, see Supporting Information for experimental
details.
(18) Sanford and Ritter also observed a similar dependence on the exogenous
free ligand for the stoichiometric C-H functionalizations; see: (a) Powers,
D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc.
2009, 131, 17050. (b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford,
M. S. J. Am. Chem. Soc. 2005, 127, 7330.
(19) Ascorbic acid was found to suppress the amidation reaction in a dose-
dependent manner; see Supporting Information for details. Yet, ascorbic
acid may affect the catalytic turnovers by its reducing properties.
(20) (a) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. Eur. J. Org.
Chem. 2003, 4549. (b) Barani, M.; Fioravanti, S.; Lereto, M. A.; Pellacani,
L.; Tardella, P. A. Tetrahedron 1994, 50, 3829. (c) Lwowski, W.; Maricich,
T. J. J. Am. Chem. Soc. 1965, 87, 3630.
(21) Analogous to nitrene, carbenes are known to undergo insertion to a Pd-C
bond probably via Pd-carbene; for examples, see: (a) Jellema, E.; Jongerius,
A. L.; Reek, J. N. H.; de Bruin, B. Chem. Soc. ReV. 2010, 39, 1706. (b)
Albe´niz, A. C.; Espinet, P.; Pe´rez-Mateo, A.; Nova, A.; Ujaque, G.
Organometallics 2006, 25, 1293. (c) Albe´niz, A. C.; Espinet, P.; Manrique,
R.; Pe´rez-Mateo, A. Chem.sEur. J. 2005, 11, 1565. (d) Sole´, D.; Vallverdu´,
L.; Solans, X.; Font-Bardia, M.; Bonjoch, J. Organometallics 2004, 23,
1438.
(22) (a) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302. (b) Whitfield, S. R.;
Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142. (c) Dick, A. R.; Kampf,
J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790.
JA106364R
9
12864 J. AM. CHEM. SOC. VOL. 132, NO. 37, 2010