R. Umeda et al. / Journal of Organometallic Chemistry 696 (2011) 1916e1919
1919
(k) Y. Kamochi, T. Kubo, J. Synth. Org. Chem. Jpn. 52 (1994) 285;
(l) G.A. Molander, Chem. Rev. 92 (1992) 29;
(m) D.P. Curran, T.L. Fevig, C.P. Jasperse, M.J. Totleben, Synlett (1992) 943;
(n) H.B. Kagan, New J. Chem. 14 (1990) 453 and references therein.
[2] For selected examples, see: (a) S. Fukuzawa, N. Nakamoto, T. Saito, Euro-
pean J. Org. Chem. (2004) 2863;
[9] In the reaction used ytterbium or samarium metal, it was also disclosed that
various reactions were promoted by the addition of a catalytic amount of
methyl iodide or iodine; however, the role of additives was not clarified in
these reports: (a) Z. Hou, K. Takamine, O. Aoki, H. Shiraishi, Y. Fujiwara,
H. Taniguchi, J. Org. Chem. 53 (1988) 6077;
(b) R. Yanada, K. Bessho, K. Yanada, Synlett (1995) 443;
(b) W.-K. Su, B. Yang, Synth. Commun. 33 (2003) 2613;
(c) W.-K. Su, Y.-S. Li, Y.-M. Zhang, Synth. Commun. 32 (2002) 2101;
(d) W.-K. Su, Y.-M. Zhang, Synth. Commun. 31 (2001) 273;
(e) R. Yanada, M. Okaniwa, A. Kaieda, T. Ibuka, Y. Takemoto, J. Org. Chem.
66 (2001) 1283;
(c) R. Yanada, N. Negoro, K. Yanada, T. Fujita, Tetrahedron Lett. 38 (1997)
3271;
(d) R. Yanada, N. Negoro, M. Okaniwa, Y. Miwa, T. Taga, K. Yanada, T. Fujita,
Synlett (1999) 537;
(e) L. Wang, L. Zhou, Y. Zhang, Synlett (1999) 1065;
(f) S. Talukdar, J.-M. Fang, J. Org. Chem. 66 (2001) 330;
(g) J. Dowsland, F. McKerlie, D.J. Procter, Tetrahedron Lett. 41 (2000) 4923;
(h) A. Ogawa, H. Takeuchi, T. Hirao, Tetrahedron 40 (1999) 7113;
(i) R. Yanada, N. Neguro, M. Okaniwa, Y. Miwa, T. Taga, K. Yanada, T. Fujita,
Synlett (1999) 537;
(f) S. Talukdar, J.-M. Fang, J. Org. Chem. 66 (2001) 330.
[10] When a catalytic amount of 1,2-diiodoethane instead of iodine was added,
the reductive dimerization of carbonyl compounds with lanthanum metal
was also enhanced to give the corresponding pinacol coupling products:
unpublished results.
(j) N. Neguro, R. Yanada, M. Okaniwa, K. Yanada, T. Fujita, Synlett (1998)
835;
[11] A similar trends was observed on the reductive dehalogenation of alkyl
halides using lanthanum metal, see: ref [5].
(k) R. Yanada, N. Nagoro, K. Yanada, T. Fujita, Tetrahedron Lett. 38 (1997)
3271;
(l) Y. Makioka, S. Uebori, M. Tsuno, Y. Taniguchi, K. Takaki, Y. Fujiwara,
J. Org. Chem. 61 (1996) 372;
[12] It was already reported that the reaction of 2,2-dialkyl-1,1-dihalogenoalkenes
having long alkyl chains with SmI2 gave the corresponding cyclopentene
derivatives, see: M. Kunishima, K. Hioki, S. Tani, A. Kato Tetrahedron Lett. 35
(1994) 7253.
(m) T. Imamoto, Y. Hatajima, N. Takiyama, T. Takeyama, Y. Kamiya, J. Chem.
Soc. Perkin Trans. 1 (1991) 3127;
(n) S. Fukuzawa, N. Sumimoto, T. Fujinami, S. Sakai, J. Org. Chem. 55 (1990)
1628;
(o) T. Imamoto, Y. Kamiya, T. Hatajima, H. Takahashi, Tetrahedron Lett. 30
(1989) 5149.
[13] On the reaction, it was suggested that low-valent lanthanum species such as LaI
and LaI2, which was generated by the reaction of lanthanum metal and iodine,
was an active species. In order to clarify the low-valent lanthanum species, we
investigated the reaction of 1,1-dibromo-1-tridecene (1: X ¼ Br) under various
molar ratio of lanthanum metal and iodine. However, from these results, no
direct evidence for the lanthanum species was given at present.
[14] It was shown that several rare-earth monohalides were formed by dispro-
portionation between rare-earth metals and their trihalides (or dihalides),
see: (a) H. Mattausch, J.B. Hendricks, R. Eger, J.D. Corbett, A. Simon, Inorg.
Chem. 19 (1980) 2128;
[3] For recent examples for using lanthanum metal, see: (a) Y.-J. Bian, X.-G. Yu, H.-
W. Peng, J.-T. Li, Synth. Commun. 36 (2006) 2513;
(b) Y.-J. Bian, J.-Q. Zhang, J.-P. Xia, J.-T. Li, Synth. Commun. 36 (2006) 2475;
(c) W.-D.Z. Li, B.-C. Ma, Org. Lett. 7 (2005) 271.
[4] (a) Top. Curr. Chem.W.A. Herrmann (Ed.), Organolanthanoid Chemistry:
Synthesis, Structure, Catalysis, Springer, Berlin, 1996;
(b) T.J. Marks, Prog. Inorg. Chem. 24 (1978) 51.
[5] T. Nishino, T. Watanabe, M. Okada, Y. Nishiyama, N. Sonoda, J. Org. Chem. 67
(2002) 966.
(b) R.E. Araujo, J.D. Corbett, Inorg. Chem. 20 (1981) 3032.
[15] The possible mechanism and migration order of the substituents of FBW
rearrangement have been discussed. For reviews, see: (a) W.A. Chalifoux,
R.R. Tykwinski, Chem. Rec. 6 (2006) 169;
(b) R. Knorr, Chem. Rev. 104 (2004) 3795;
[6] (a) Y. Nishiyama, H. Kawabata, T. Nishino, K. Hashimoto, N. Sonoda, Tetra-
hedron 59 (2003) 6609;
(c) W. Kirmse, Angew. Chem. Int. Ed. Engl. 36 (1997) 1164;
(d) R.A. Moss, M. Jones Jr. (Eds.), Carbenes, vol. 2, Wiley and Sons, New York,
1983, pp. 43e100;
(b) H. Kawabata, T. Nishino, Y. Nishiyama, N. Sonoda, Tetrahedron Lett. 43
(2002) 4911.
(e) P.J. Stang, Acc. Chem. Res. 15 (1982) 348;
[7] (a) P. Fritsch, Liebigs Ann. Chem. 279 (1894) 319;
(b) W.P. Buttenberg, Liebigs Ann. Chem. 279 (1894) 324;
(c) H. Wiechell, Liebigs Ann. Chem. 279 (1894) 337.
[8] FBW rearrangement of gem-dibromoalkenes by SmI2 has been reported, see:
M. Kunishima, K. Hioki, T. Ohara, S. TaniJ. Chem. Soc. Chem. Commun. (1992)219.
(f) G. Köbrich, Angew. Chem. Int. Ed. Engl. 4 (1965) 49.
[16] Another possible reaction pathway containing the hydrogen abstraction of
mono bromo vinyl radical from the alkyl chain, the addition of the formed
carbon radical to carbonecarbon double bond, and reductive debromination
can not be ruled out.