11702 J. Phys. Chem. B, Vol. 114, No. 36, 2010
Dunbar et al.
the Zn EHO-amine response. Previous studies of Zn EHO have
shown that it can be successfully used to fabricate an alkylamine
detector.17,21 Therefore, all these porphyrin-analyte pairs high-
lighted in Figure 4 have sufficiently strong responses to be used
to develop toxic gas sensors.
water bath was estimated by extrapolating the data found in
the CRC handbook of chemistry and physics: a ready reference
book of chemical and physical data, 58th ed.; editor Robert C.
Weast; Cleveland (Ohio): CRC Press, 1977. The results are
shown in table S1. This material is available free of charge via
4. Conclusions
The responses of several different metallo-porphyrins to a
broad range of analytes have been investigated to determine
their suitability as optical-based thin film sensors. Those
porphyrins that showed changes in their absorbance spectra upon
exposure hold considerable potential to be used as gas sensors
for the corresponding analyte. It is the process of gaining a
ligand or ligand exchange which results in a change of the
porphyrin symmetry that results in the spectral changes observed
and therefore is a necessary condition to make an effective
optical-based gas sensor.
UpontransferringtheporphyrinstosolidstateLangmuir-Blodgett
films, spectral changes similar to those observed in solution
occurred most of the time. Therefore, porphyrins that readily
exchange or coordinate extra ligands in solution are shown to
be suitable materials for solid state colorimetric detectors for
volatile organic gases. However, porphyrins that already have
strongly attached axial ligands when synthesized only show a
sensor response to those analytes that can substitute these axial
ligands, and as such Au EHO and Sn EHO showed no response
to any of the anayltes.
In particular, the response of Co EHO was very strong upon
exposure to acetic acid, butanone, hexylamine, octylamine,
triethylamine, octanol, octanal, and trimethyl phosphate. This
is attributed to switching between the Co(II) and Co(III),
resulting in the formation of either fewer or more axial ligands,
respectively, with large associated spectral changes. However,
not all metallo-pophyrins that can exist in more than one
oxidation state showed such strong responses; for example, it
is proposed that Mn EHO did not switch oxidation state but
merely exchanged ligands therefore displaying considerably
smaller spectral changes. While the spectral changes displayed
by Mn EHO were considerably smaller than those for Co EHO,
they are comparable to those observed for Zn EHO as an amine
sensor.17,21 Therefore,itisconcludedthatalloftheporphyrin-analyte
pairs reported in Figure 4 (apart from Mg EHO which was
readily demetalated and therefore not sufficiently stable) are
sufficiently strong to be used as effective toxic gas sensors.
References and Notes
(1) Mandelis; Christofides, C. Physics, Chemistry, and Technology of
Solid State Gas Sensor DeVices; Wiley-Interscience Publications: New York,
1993.
(2) Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel,
S. E.; Vaid, T. P.; Walt, D. R. Chem. ReV. 2000, 100, 2595.
(3) Moseley, P. T.; Norris, J. O. W.; Williams, D. E. Techniques and
Mechanisms in Gas Sensing, Adam Hilger Series; Taylor and Francis:
Bristol, 1991.
(4) Lonergan, M. C.; Severin, E. J.; Doleman, B. J.; Beaber, S. A.;
Grubb, R. H.; Lewis, N. S. Chem. Mater. 1996, 8 (9), 2298.
(5) Capone, S.; Mongelli, S.; Rella, R.; Siciliano, P.; Valli, L. Langmuir
1999, 15 (5)), 1748.
(6) George, C. D.; Richardson, T.; Hofton, M. E.; Vale, C. M.; Neves,
M.G. M.; Cavaleiro, J. A. S. Mater. Sci. Eng. C 1999, 8-9, 559.
(7) Richardson, T.; Smith, V. C.; Johnstone, R. A. W.; Sobral,
A. J. F. N.; Rocha-Gonsalves, A.M.d’A. Thin Solid Films 1998, 327-329,
3151.
(8) Dooling, C. M.; Worsfold, O.; Richardson, T. H.; Tregonning, R.;
Vysotsky, M. O.; Hunter, C. A.; Kato, K.; Shinbo, K.; Kaneko, F. J. Mater.
Chem. 2001, 11, 392.
(9) Worsfold, O.; Dooling, C. M.; Richardson, T. H.; Vysotsky, M. O.;
Tregonning, R.; Hunter, C. A.; Malins, C. J. Mater. Chem. 2001, 11, 399.
(10) Pedrosa, J. M.; Dooling, C. M.; Richardson, T. H.; Hyde, R. K.;
Hunter, C. A.; Mart´ın, M. T.; Camacho, L. J. Mater. Chem. 2002, 12, 2659.
(11) Suslick, K. S.; Rakow, N. A.; Sen, A. Tetrahedron 2004, 60, 11133.
(12) Dunbar, A. D. F.; Richardson, T. H.; McNaughton, A. J.; Hutch-
inson, J.; Hunter, C. A. J. Phys. Chem. B 2006, 110 (33), p16646–16651.
(13) Dunbar, A. D. F.; Richardson, T. H.; Hutchinson, J.; Hunter, C. A.
Sens. Actuators, B 2008, 128 (2), 468–481.
(14) Sanders, J. K. M.; Bampos, N.; Clyde-Watson, Z.; Darling, S. L.;
Hawley, J. C.; Kim, H.-J.; Mak, C. C.; Webb, S. J. The Porphyrin Handbook
(Vol. 3, Chapter 15: The axial coordination chemistry of metalloporphyrins);
Academic Press: New York, 1999.
(15) Dunbar, A.; Richardson, T. H.; McNaughton, A. J.; Barford, W.;
Hutchinson, J.; Hunter, C. A. Colloids Surf., A 2006, 284-285, 339–
fa0d2648ca551e71b1a2f0ba76e29b18.
(16) Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 1999, 121, 11538–
11545.
(17) Dunbar, A. D. F.; Richardson, T. H.; McNaughton, A. J.; Cadby,
A.; Hutchinson, J.; Hunter, C. A. J. Porphyrins Phthalocyanines 2006, 10
(07), p978.
(18) Dolphin, D. The Porphyrins: Structure and Synthesis, Part A;
Academic Press: London, 1978; Vol. 1.
(19) Kadish, K. M.; Shuie, L. R. Inorg. Chem. 1982, 21, 1112.
(20) Holloway, C. E.; Melnik, M. Main Group Met. Chem. 1998, 21,
371.
(21) Brittle, S.; Richardson, T. H.; Dunbar, A. D. F.; Turega, S.; Hunter,
C. A. J. Phys. Chem. B 2008, 112 (36), 11278–11283.
(22) Brittle, S.; Richardson, T. H.; Hutchinson, J.; Hunter, C. A. Colloids
Surf., A 2008, 321 (1-3), 29–33.
Acknowledgment. Dr W. Barford is acknowledged for his
helpful discussions. EPSRC (UK) Grant No GR/596845/01
provided the financial support for this work.
Supporting Information Available: The analyte vapor
concentration for each of the analytes held at 0 °C in the iced
JP102755H