ORGANIC
LETTERS
2010
Vol. 12, No. 19
4217-4219
Transition-Metal-Free Catalytic Synthesis
of 1,5-Diaryl-1,2,3-triazoles
Sen W. Kwok, Joseph R. Fotsing, Rebecca J. Fraser, Valentin O. Rodionov, and
Valery V. Fokin*
The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, California 92037
Received July 7, 2010
ABSTRACT
1,5-Diarylsubstituted 1,2,3-triazoles are formed in high yield from aryl azides and terminal alkynes in DMSO in the presence of catalytic
tetraalkylammonium hydroxide. The reaction is experimentally simple, does not require a transition-metal catalyst, and is not sensitive to
atmospheric oxygen and moisture.
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)
is a reliable means for the synthesis of 1,4-disubstituted-
1H-1,2,3-triazoles.1 The exceptional stability of 1,2,3-tria-
zoles and the availability of a reliable synthesis leading to
these heterocycles have enabled widespread applications of
this previously underutilized class of azoles in medicinal
chemistry, chemical biology, and materials science.2
electrophilic terminal nitrogen of the azide are known,9 the
requirement for the stoichiometric lithium or magnesium
acetylide reagent imposes obvious limitations on the range
of functional groups that are compatible with these processes.
Reported here is a mild and experimentally simple catalytic
method for the generation of the reactive acetylides which
readily react with organic azides resulting in the exclusive
formation of 1,5-disubstituted triazoles.
In contrast to the 1,4-disubstituted-1H-1,2,3-triazoles,
general and regioselective routes leading to the 1,5-regioi-
somers are not as well developed.3-8 Although syntheses
relying on the nucleophilic attack by the acetylide at the
We envisioned that the high acidity of aryl acetylenes in
dimethylsulfoxide10-12 should allow formation of the reac-
(7) (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
(b) Rasmuseen, L. K.; Boren, B. C.; Fokin, V. V. Org. Lett. 2007, 9, 5337.
(c) Boren, B. C.; Narayan, S.; Rasmuseen, L. K.; Zhang, L.; Zhao, H.; Lin,
Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 8923.
(8) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6,
1237.
(1) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
(2) For recent reviews, see: (a) Wu, P.; Fokin, V. V. Aldrichimica Acta
2007, 40, 7. (b) Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc.
ReV. 2007, 36, 1369. (c) Moses, J. E.; Moorhouse, A. D. Chem. Soc. ReV.
2007, 36, 1249. (d) Johnson, J. A.; Koberstein, J. T.; Finn, M. G.; Turro,
N. J. Macromol. Rapid Commun. 2008, 29, 1052.
(9) (a) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh. Obsh.
Khim. 1965, 1, 2077. (b) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A.
Zh. Org. Khim. 1967, 3, 2241. (c) Akimova, G. S.; Chistokletov, V. N.;
Petrov, A. A. Zh. Org. Khim. 1967, 3, 968. (d) Akimova, G. S.; Chistokletov,
V. N.; Petrov, A. A. Zh. Org. Khim. 1968, 4, 389.
(3) Brunner, M.; Maas, G.; Klaerner, F.-G. HelV. Chim. Acta 2005, 88,
1813
.
(4) Coats, S. J.; Link, J. S.; Gauthier, D.; Hlasta, D. J. Org. Lett. 2005,
7, 1469
(10) Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.;
Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.; McCollum,
.
(5) Holzer, W.; Ruso, K. J. Heterocycl. Chem. 1992, 29, 1203
.
G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006
(11) Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem.
1980, 45, 3295
.
(6) Uhlmann, P.; Felding, J.; Vedso, P.; Begtrup, M. J. Org. Chem. 1997,
62, 9177
.
.
10.1021/ol101568d 2010 American Chemical Society
Published on Web 09/08/2010