2488
S. Kamijo et al.
FEATURE ARTICLE
(4) For recent representative examples of direct C–H oxidation,
see: (a) Ohtake, H.; Higuchi, T.; Hirobe, M. J. Am. Chem.
Soc. 1992, 114, 10660. (b) Kaufman, M. D.; Grieco, P. A.;
Bougie, D. W. J. Am. Chem. Soc. 1993, 115, 11648.
(c) Groves, J. T.; Bonchio, M.; Carofiglio, T.; Shalyaev, K.
J. Am. Chem. Soc. 1996, 118, 8961. (d) Shingaki, T.; Miura,
K.; Higuchi, T.; Hirobe, M.; Nagano, T. Chem. Commun.
1997, 861. (e) Kim, C.; Chen, K.; Kim, J.; Que, L. Jr. J. Am.
Chem. Soc. 1997, 119, 5964. (f) Breslow, R.; Huang, Y.;
Zhang, X.; Yang, J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94,
11156. (g) Arnone, A.; Foletto, S.; Metrangolo, P.;
Pregnolato, M.; Resnati, G. Org. Lett. 1999, 1, 281.
(h) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem.
Soc. 2004, 126, 9542. (i) Reddy, B. V. S.; Reddy, L. R.;
Corey, E. J. Org. Lett. 2006, 8, 3391. (j) Chen, M. S.;
White, M. C. Science 2007, 318, 783. (k) Nizova, G. V.;
Shul’pin, G. B. Tetrahedron 2007, 63, 7997. (l) Chen, K.;
Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130,
7247. (m) Chen, K.; Baran, P. S. Nature 2009, 459, 824.
(n) Litvinas, N. D.; Brodsky, B. H.; Du Bois, J. Angew.
Chem. Int. Ed. 2009, 48, 4513. (o) Chen, K.; Eschenmoser,
A.; Baran, P. S. Angew. Chem. Int. Ed. 2009, 48, 9705.
(p) Chen, M. S.; White, M. C. Science 2010, 327, 566.
(5) See reference 1b, pp 231–236 (MnO2) and pp 311–317
(KMnO4).
G. W. Science 2006, 312, 1941. (c) Das, S.; Brudvig, G. W.;
Crabtree, R. H. J. Am. Chem. Soc. 2008, 130, 1628.
(15) For recent reports on Mn-catalyzed epoxidation in similar
systems, see: (a) Murphy, A.; Stack, S. P. J. Mol. Catal. A:
Chem. 2006, 251, 78. (b) Kang, B.; Kim, M.; Lee, J.; Do, Y.;
Chang, S. J. Org. Chem. 2006, 71, 6721. (c) Nehru, K.;
Kim, S. J.; Kim, I. Y.; Seo, M. S.; Kim, Y.; Kim, S.-J.; Kim,
J.; Nam, W. Chem. Commun. 2007, 4623. (d) Guillemot,
G.; Neuburger, M.; Pfaltz, A. Chem. Eur. J. 2007, 13, 8960.
(e) Ilyashenko, G.; Sale, D.; Motevalli, M.; Watkinson, M.
J. Mol. Catal. A: Chem. 2008, 296, 1. (f) Ho, K.-P.; Wong,
W.-L.; Lam, K.-M.; Lai, C.-P.; Chan, T. H.; Wong, K.-Y.
Chem. Eur. J. 2008, 14, 7988. (g) Garcia-Bosch, I.;
Company, A.; Fontrodona, X.; Ribas, X.; Costas, M. Org.
Lett. 2008, 10, 2095.
(16) (a) Duncan, T. V.; Ishizuka, T.; Therien, M. J. Am. Chem.
Soc. 2007, 129, 9691. (b) Arzoumanian, H.; Bakhtchadjian,
R.; Agrifoglio, G.; Atencio, R.; Briceño, A. Transition Met.
Chem. (Dordrecht, Neth.) 2006, 31, 681.
(17) Trost, B. M.; Braslau, R. J. Org. Chem. 1988, 53, 532.
(18) The addition of a small amount of water during preparation
of the Mn catalyst helped to give reproducible results. Water
dissolves the MnCl2 salt and promotes the formation of the
Mn catalyst.
(19) Over-oxidation took place to produce cyclodocecane-1,5-
dione as a byproduct (<5% yield).
(20) See the experimental section for details.
(6) Kamijo, S.; Amaoka, Y.; Inoue, M. Chem. Asian J. 2010, 5,
486.
(7) (a) Handbook of Reagents for Organic Synthesis: Activating
Agents and Protecting Groups; Pearson, A. J.; Roush, W. R.,
Eds.; Wiley: Chichester, 1999. (b) Kociénski, P. J.
Protecting Groups; Thieme: Stuttgart, 2000. (c) Greene, T.
W.; Wuts, P. G. M. Protective Groups in Organic Synthesis;
Wiley: New York, 2007.
(8) For representative applications of methyl ethers as a
synthetic intermediate in total syntheses, see: (a) Corey, E.
J.; Hong, B. J. Am. Chem. Soc. 1994, 116, 3149.
(21) For examples, see: (a) Mello, R.; Fiorentino, M.; Fusco, C.;
Curci, R. J. Am. Chem. Soc. 1989, 111, 6749. (b) Davies,
H. M. L.; Manning, J. R. Nature 2008, 451, 417. (c) Fiori,
K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J.
Tetrahedron 2009, 65, 3042; see also reference 4j.
(22) Because methine C–H bonds have a higher intrinsic
reactivity toward oxidation than do methylene C–H bonds,
and no formation of octanoate ester was observed, we
assumed that octanoic acid was generated through
intermediate A; however, we cannot rule out the possibility
of the involvement of intermediate B.
(b) Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem.
Soc. 1997, 119, 12031. (c) Pattenden, G.; Gonzalez, M. A.;
MuCulloch, S.; Walter, A.; Woodhead, S. J. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 12024. (d) Overman, L. E.;
Velthuisen, E. J. J. Org. Chem. 2006, 71, 1581.
(23) For reports on Mn-catalyzed benzylic C–H oxidation, see:
(a) Hamada, T.; Irie, R.; Hamachi, K.; Katsuki, T.
Tetrahedron 1998, 54, 10017. (b) Lee, N. H.; Lee, C.-S.;
Jung, D.-S. Tetrahedron Lett. 1998, 39, 1385.
(9) (a) Godfrey, C. R. A. In Comprehensive Organic Synthesis,
Vol. 7; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford,
1991, Chap. 2.6, 235–240; and references therein.
(b) Larock, R. C. Comprehensive Organic Transformations;
Wiley-VCH: New York, 1999, 1641–1645.
(10) (a) Curci, R.; D’Accolti, L.; Fiorentino, M.; Fusco, C.;
Adam, W.; González-Nuñez, M. E.; Mello, R. Tetrahedron
Lett. 1992, 33, 4225. (b) van Heerden, F. R.; Dixon, J. T.;
Holzapfel, C. W. Tetrahedron Lett. 1992, 33, 7399.
(11) Arnone, A.; Bernardi, R.; Cavicchioli, M.; Resnati, G.
J. Org. Chem. 1995, 60, 2314.
(12) For Ru-catalyzed oxidation of acyclic ethers, see:
(a) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K.
B. J. Org. Chem. 1981, 46, 3936. (b) Schuda, P. F.;
Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983,
24, 3829.
(13) For examples of direct methyl ether oxidation, see:
(a) Bach, R. D.; Taaffee, T. H.; Holubka, J. W. J. Org. Chem.
1980, 45, 3439. (b) Olah, G. A.; Gupta, B. G. B.; Fung, A. P.
Synthesis 1980, 897. (c) Nishiguchi, T.; Bougauchi, M.
J. Org. Chem. 1990, 55, 5606. (d) Rozen, S.; Dayan, S.;
Bareket, Y. J. Org. Chem. 1995, 60, 8267. (e) Suzuki, H.;
Takeuchi, T.; Mori, T. Bull. Chem. Soc. Jpn. 1997, 70, 3111.
(14) (a) Chen, H.; Tagore, R.; Das, S.; Incarvito, C.; Faller, J. W.;
Crabtree, R. H.; Brudvig, G. W. Inorg. Chem. 2005, 44,
7661. (b) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig,
(c) Havranek, M.; Singh, A.; Sames, D. J. Am. Chem. Soc.
1999, 121, 8965. (d) Pan, J.-F.; Chen, W. J. Mol. Catal. A:
Chem. 2001, 176, 19. (e) Blay, G.; Fernández, I.; Giménez,
T.; Pedro, J. R.; Ruiz, R.; Pardo, E.; Lloret, F.; Muñoz, M. C.
Chem. Commun. 2001, 2102. (f) Murahashi, S.-I.; Noji, S.;
Hirabayashi, T.; Komiya, N. Tetrahedron: Asymmetry 2005,
16, 3527. (g) Mardani, H. R.; Golchoubian, H. J. Mol. Catal.
A: Chem. 2006, 259, 197.
(24) For recent examples of catalytic benzylic C–H oxidations,
see: (a) Choudary, B. M.; Prasad, A. D.; Bhuma, V.;
Swapna, V. J. Org. Chem. 1992, 57, 5841. (b) Murahashi,
S.-I.; Oda, Y.; Naota, T.; Kuwabara, T. Tetrahedron Lett.
1993, 34, 1299. (c) Catino, A. J.; Nichols, J. M.; Choi, H.;
Gottipamula, S.; Doyle, M. P. Org. Lett. 2005, 7, 5167.
(d) Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.;
Oldham, J.; Burton, A. J.; Barrett, A. G. M. Org. Lett. 2005,
7, 4549. (e) Nakanishi, M.; Bolm, C. Adv. Synth. Catal.
2007, 349, 861. (f) Nagano, T.; Kobayashi, S. Chem. Lett.
2008, 37, 1042.
(25) (a) Walter, D. S. In Comprehensive Organic Functional
Group Transformations, Vol. 3; Katrizky, A. R.; Meth-
Cohn, O.; Rees, C. W.; Pattenden, G., Eds.; Pergamon:
Oxford, 1995, 293–294. (b) Larock, R. C. Comprehensive
Organic Transformations: A Guide to Functional Group
Synthesis 2010, No. 14, 2475–2489 © Thieme Stuttgart · New York