A. Kralj et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5446–5450
5449
Table 1
which behaved as weak allosteric agonists on the US28 wild type
(Table 1). Unfortunately, this group of compounds demonstrated
visible affinity and efficacy on the D2L receptor (Supplementary
data), indicating that this molecular scaffold might be used for
the development of biogenic amine receptor ligands. The
Functional characterization of compounds 6–25 employing the US28 receptora
Compound
EC50
(lM)
pEC50 SEM
Efficacy (% over basal)
VUF2274
Methiothepin
6
7
8
9
4.50
5.34 0.46
6.45 0.45
5.32 0.27
5.82 0.21
5.36 0.18
n.d.
5.99 0.40
5.07 0.02
5.13 0.09
5.46 0.22
4.87 0.07
n.d.
5.12 0.08
6.56 0.32
5.75 0.26
5.70 0.51
5.11 0.49
n.d.
6.89 0.21
5.85 0.36
5.81 0.26
5.64 0.39
ꢀ22
10
ꢀ22
ꢀ20
41
n.d.
ꢀ14
ꢀ62
ꢀ18
ꢀ37
ꢀ70
n.d.
ꢀ51
22
15
15
12
n.d.
21
16
27
21
8
3
4
3
7
0.35
4.80
1.50
4.40
unfavorable D2L receptor affinity (2 lM) was reported also for the
US28 inverse agonist VUF2274.7 Methiothepin displayed agonist
activity on US28 and has an antipsychotic action on serotonin
and dopamine receptors.27 The cross-reactivity of small-molecu-
lar-weight chemokine ligands with biogenic amine receptors is
one of the main issues regarding the design of highly selective che-
mokine ligands.28
n.d.
10
12
13
14
15
16
17
19
20
20’
21
22
23
23’
24
25
1.00
8.50
7.40
3.40
13.50
n.d.
7.50
0.28
1.80
2.00
7.80
n.d.
3
2
2
6
5
Our attempts to design a novel inverse agonist for US28 re-
sulted in a series of allosteric modulators with the potency and
efficacy comparable or superior to the reference VUF2274. These
novel US28 allosteric modulators provide valuable chemical tools
to investigate molecular mechanisms of US28 constitutive signal-
ing and its role in the pathogenesis of viral infection, tumorigenesis
and development of cardiovascular disease. The further
development of novel US28 allosteric inverse agonists by synthesis
procedures that will yield enantiopure compounds and the deter-
mination of preferred receptor ligand interactions, which depend
on the absolute stereochemistry of the enantiomers, are in
progress.
6
3
3
5
3
0.13
1.40
1.50
2.30
2
3
5
5
a
Functional data were obtained on transfected HEK cells that transiently
expressed US28 as shown by the PathDetect trans Elk-1 reporter gene assay. Dose
response curves of 4–8 experiments performed in triplicates have been normalized
and pooled to get a mean curve from which the EC50 value and the maximum
intrinsic activity of each compound was obtained. n.d.—not detectable.
Acknowledgments
We thank to DFG (Deutsche Forschungsgemeinschaft) for the
financial support to A.W. and Stefanie Fehler for the syntheses con-
ducted during her internship. T.S. was supported by DFG (Deutsche
Forschungsgemeinschaft, GRK1071) and IZKF (Interdisziplinäres
Zentrum für Klinische Forschung) Erlangen.
Supplementary data
Supplementary data (experimental procedures, sequence
alignment, results of the cytotoxicity assay, the reporter gene assay
performed on mock transfected HEK cells, and synthesis proce-
dures) associated with this article can be found, in the online ver-
References and notes
1. Maussang, D.; Vischer, H. F.; Leurs, R.; Smit, M. J. Mol. Pharmacol. 2009, 76, 692.
2. Vomaske, J.; Nelson, J. A.; Streblow, D. N. Infect. Disord. Drug Targets 2009, 9,
548.
3. Boomker, J. M.; van Luyn, M. J.; The, T. H.; de Leij, L. F.; Harmsen, M. C. Rev. Med.
Virol. 2005, 15, 269.
4. Sodhi, A.; Montaner, S.; Gutkind, J. S. Nat. Rev. Mol. Cell Biol. 2004, 5, 998.
5. Streblow, D. N.; Orloff, S. L.; Nelson, J. A. Curr. Drug Targets Infect. Disord. 2001,
1, 151.
6. Maussang, D.; Verzijl, D.; van Walsum, M.; Leurs, R.; Holl, J.; Pleskoff, O.;
Michel, D.; van Dongen, G. A. M. S.; Smit, M. J. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 13068.
7. Hesselgesser, J.; Ng, H. P.; Liang, M.; Zheng, W.; May, K.; Bauman, J. G.;
Monahan, S.; Islam, I.; Wei, G. P.; Ghannam, A.; Taub, D. D.; Rosser, M.; Snider,
R. M.; Morrissey, M. M.; Perez, H. D.; Horuk, R. J. Biol. Chem. 1998, 273, 15687.
8. Vischer, H. F.; Hulshof, J. W.; Hulscher, S.; Fratantoni, S. A.; Verheij, M. H.;
Victorina, J.; Smit, M. J.; de Esch, I. J.; Leurs, R. Bioorg. Med. Chem. 2010, 18, 675.
9. Casarosa, P.; Menge, W. M.; Minisini, R.; Otto, C.; van Heteren, J.; Jongejan, A.;
Timmerman, H.; Moepps, B.; Kirchhoff, F.; Mertens, T.; Smit, M. J.; Leurs, R. J.
Biol. Chem. 2003, 278, 5172.
Figure 1. Functional characterization of reference compounds VUF2274 and
methiothepin, and representative novel compounds 7, 8 and 14. HEK cells were
transiently transfected with US28 and components of PathDetect Elk-1. Normalized
curves from 3 to 6 experiments, each performed in triplicate, are shown. The error
bars represent the SEM.
10. Hulshof, J. W.; Vischer, H. F.; Verheij, M. H.; Fratantoni, S. A.; Smit, M. J.; de
Esch, I. J.; Leurs, R. Bioorg. Med. Chem. 2006, 14, 7213.
cell viability was investigated. The compounds with the highest
rate of inverse agonism (compounds 12, 15 and 17) had minor
but significant cytotoxicity, which could account for the pro-
nounced inverse agonist effect (Supplementary data). The other
novel inverse agonists (7, 10, 13 and 14) had no cytotoxicity. The
observed inverse agonism was thus mediated by US28.
11. Hulshof, J. W.; Casarosa, P.; Menge, W. M.; Kuusisto, L. M.; van der Goot, H.;
Smit, M. J.; de Esch, I. J.; Leurs, R. J. Med. Chem. 2005, 48, 6461.
12. Gao, J. L.; Murphy, P. M. J. Biol. Chem. 1994, 269, 28539.
13. Storelli, S.; Verdijk, P.; Verzijl, D.; Timmerman, H.; van de Stolpe, A. C.; Tensen,
C. P.; Smit, M. J.; De Esch, I. J. P.; Leurs, R. Bioorg. Med. Chem. Lett. 2005, 15, 2910.
14. Heinrich, M. R.; Blank, O.; Wolfel, S. Org. Lett. 2006, 8, 3323.
15. Heinrich, M. R.; Blank, O.; Wetzel, A. J. Org. Chem. 2007, 72, 476.
16. Blank, O.; Wetzel, A.; Ullrich, D.; Heinrich, M. R. Eur. J. Org. Chem. 2008, 2008,
3179.
Structural modifications of the dihydroisoquinolinone core re-
sulted in a series of 1-phenyltetrahydroisoquinolines (19–25)