pubs.acs.org/joc
superstatins are currently marketed including fluvastatin,7
Lactone Pathway to Statins Utilizing the Wittig
Reaction. The Synthesis of Rosuvastatin
pitavastatin,8 atorvastatin,9 and rosuvastatin.10 The value of
rosuvastatin is growing with new approved indications in phase
III studies, which raises it high on the list of synthetic targets.11
,†
Zdenko Casar,* Miha Steinbucher, and Janez Kosmrlj*
‡
,‡
ꢀ
€
ꢀ
†Lek Pharmaceuticals, d.d., Sandoz Development Center
Slovenia, API Development, Organic Synthesis Department,
‡
Kolodvorska 27, 1234 Menges, Slovenia, and Faculty of
ꢀ
Chemistry and Chemical Technology, University of Ljubljana,
SI-1000 Ljubljana, Slovenia
zdenko.casar@sandoz.com; janez.kosmrlj@fkkt.uni-lj.si
Received May 30, 2010
FIGURE 1. Left: general formula of superstatins (Het = heterocycle).
Right: rosuvastatin calcium.
Over the last three decades, diverse strategies to the synthetic
statins have been developed including those utilizing the Wittig
reaction.5 Unfortunately, many of these are long, multistep
linear reaction sequences, often involving late and unselective
functional group transformations and protection/deprotection
steps with difficult purification procedures. Tedious prepara-
tion of chiral precursors, several synthetic steps, and a need of
cryo-chemistry render these approaches less attractive (see
Supporting Information for detailed discussion).7,8,10,12-17
Interestingly, the most obvious formyl functionalized
lactonized side chain precursor 1 (Scheme 1) has not yet
(8) For selected literature, see: (a) Suzuki, M.; Iwasaki, H.; Fujikawa, Y.;
Kitahara, M.; Sakashita, M.; Sakoda, R. Bioorg. Med. Chem. 2001, 9, 2727–
2743. (b) Hayashi, T.; Yokote, K.; Saito, Y.; Iguchi, A. Expert Opin.
Pharmacother. 2007, 8, 2315–2327.
(9) For selected literature, see: Roth, B. D.; Blankley, C. J.; Chucholowski,
A. W.; Ferguson, E.; Hoefle, M. L.; Ortwine, D. F.; Newton, R. S.; Sekerke,
C. S.; Sliskovic, D. R.; Stratton, C. D.; Wilson, M. J. Med. Chem. 1991, 34,
357–366.
The first entry to statins via lactonized side chain is reported,
exemplified by the synthesis of rosuvastatin. The key step is
Wittig coupling of (2S,4R)-4-(tert-butyldimethylsilyloxy)-
6-oxotetrahydro-2H-pyran-2-carbaldehyde and phosphonium
salt of an appropriately functionalized pyrimidine heterocycle.
One-pot deprotection and hydrolysis of the resulting 4-O-
TBS rosuvastatin lactone provided rosuvastatin in high yield.
(10) For selected literature, see: Watanabe, M.; Koike, H.; Ishiba, T.;
Okada, T.; Sea, S.; Hirai, K. Bioorg. Med. Chem. 1997, 5, 437–444.
(11) Forrecentmethods for the synthesis of rosuvastatin, see: (a) Balanov, A.;
Shenkar, N.; Niddam-Hildesheim, V. U.S. Patent Appl. US 2007167625 A1,
2007; Chem. Abstr. 2007, 147, 166109. (b) Radl, S.; Stach, J.; Klvana, R.; Jirman,
J. PCT Int. Appl. WO 2007000121 A1, 2007; Chem. Abstr. 2007, 146, 121983.
ꢀ
(c) Casar, Z. PCT Int. Appl. WO 2007039287 A1 2007; Chem. Abstr. 2007, 146,
421841. (d) Patel, D. J.; Kumar, R.; Dwivedi, S. P. D. WO 2007099561 A1, 2007;
Chem. Abstr. 2007, 147, 322770.
Statins are among the most commonly prescribed drugs
worldwide for the treatment of lipid disorders.1,2 Initially,
they were discovered as fungal metabolites and were com-
posed of a chiral decaline core attached to a β-hydroxy
lactone moiety.3,4 Chemical evolution to structurally refined
molecules led to semisynthetic analogues4 and later on to fully
synthetic derivatives with the decaline core being replaced by
heteroaromatic motifs (superstatins, Figure 1).5 In these mole-
cules, the β-hydroxy lactone moiety generally remained unmo-
dified as it is essential for the biological activity.6 Several
(12) (a) Jendralla, H.; Baader, E.; Bartmann, W.; Beck, G.; Bergmann,
A.; Granzer, E.; Von Kerekjarto, B.; Kesseler, K.; Kraue, R.; Schubert, W.;
Wess, G. J. Med. Chem. 1990, 33, 61–70. (b) Sliskovic, D. R.; Picard, J. A.;
Roark, W. H.; Roth, B. D.; Ferguson, E.; Krause, B. R.; Newton, R. S.;
Sekerke, C.; Shaw, M. K. J. Med. Chem. 1991, 34, 367–373. (c) Tempkin, O.;
ꢀ
Abel, S.; Chen, C.-P.; Underwood, R.; Prasad, K.; Chen, K.-M.; Repic, O.;
Blacklock, T. J. Tetrahedron 1997, 53, 10659–10670.
ꢀ
(13) Zlicar, M. PCT Int. Appl. WO 2007017117, 2007; Chem. Abstr. 2007,
ꢀ
146, 251655.
(14) Beck, G.; Kesseler, K.; Baader, E.; Bartmann, W.; Bergmann, A.;
Granzer, E.; Jendralla, H.; Von Kerekjarto, B.; Krause, R.; Paulus, E.;
Schubert, W.; Wess, G. J. Med. Chem. 1990, 33, 52–60.
(15) (a) Wess, G.; Kesseler, K.; Baader, E.; Bartmann, W.; Beck, G.;
Bergmann, A.; Jendralla, H.; Bock, K.; Holzstein, G.; Kleine., H.; Schnierer,
M. Tetrahedron Lett. 1990, 31, 2545–2548. (b) Hiyama, T.; Minami, T.;
Takahashi, K. Bull. Chem. Soc. Jpn. 1995, 68, 364–372. (c) Koike, H.;
Kabaki, M.; Taylor, N. P.; Diorazio, L. J. PCT Int. Appl. WO 2000049014
A1, 2000; Chem. Abstr. 2000, 133, 193161. (d) Bratton, L. D.; Auerbach, B.;
Choi, C.; Dillon, L.; Hanselman, J. C.; Larsen, S. D.; Lu, G.; Olsen, K.;
Pfefferkorn, J. A.; Robertson, A.; Sekerke, C.; Trivedi, B. K.; Unangst, P. C.
Bioorg. Med. Chem. 2007, 15, 5576–5589. (e) Cai, Z.; Zhou, W.; Sun, L.
Bioorg. Med. Chem. 2007, 15, 7809–7829. (f) Pfefferkorn, J. A.; Bowles,
D. M.; Kissel, W.; Boyles, D. C.; Choi, C.; Larsen, S. D.; Song, Y.; Sun,
K.-L.; Miller, S. R.; Trivedi, B. K. Tetrahedron 2007, 63, 8124–8134.
(16) (a) Yang, Y. L.; Falck, J. R. Tetrahedron Lett. 1982, 23, 4305–4308.
(b) Paquette, L. A.; Oplinger, J. A. J. Org. Chem. 1988, 53, 2953–2959.
(1) (a) Tobert, J. A. Nat. Rev. Drug Discovery 2003, 2, 517–526. (b) Istvan,
E. S.; Deisenhofer, J. Science 2001, 292, 1160–1164.
(2) Thiebaud, P.; Patel, B. V.; Nichol, M. B. Health Econ. 2008, 17, 83–97.
(3) Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346–1348.
(4) Endo, A.; Hasumi, K. Nat. Prod. Rep. 1993, 10, 541–550.
ꢀ
(5) Casar, Z. Curr. Org. Chem. 2010, 14, 816–845.
(6) Sit, S. Y.; Parker, R. A.; Motoc, I.; Han, W.; Balasubramanian, N.;
Catt, J. D.; Brown, P. J.; Harte, W. E.; Thompson, M. D.; Wright, J. J.
J. Med. Chem. 1990, 33, 2982–2999.
(7) For selected literature, see: Fuenfschilling, P. C.; Pascale, H.; Mutz,
J.-P. Org. Process Res. Dev. 2007, 11, 13-18 and references therein.
DOI: 10.1021/jo101050z
r
Published on Web 09/03/2010
J. Org. Chem. 2010, 75, 6681–6684 6681
2010 American Chemical Society