S. K. Nayak, M. K. Choudhary / Tetrahedron Letters 53 (2012) 141–144
143
R
R
R
R
R
R
R
R
R
R
R
R
K2CO3 (2.5 equiv)
+
R1X (3 equiv)
OR1 OH
R1O
OR1 OH
HO
MWI, 300-400 W, 30-150 min
OH
2
OH
3
HO
OH OH
OH
1
3a: R = H; R1 = C8H17
a: R = H
2a: R = H; R1 = C8H17
2b: R = t-Bu; R1 = C8H17
2c: R = H; R1 = CH3
b: R = t-Bu
3b: R = t-Bu; R1 = C8H17
3c: R = H; R1 = CH3
3d: R = t-Bu; R1 = CH3
3e: R = H; R1 = C3H7
2d: R = t-Bu; R1 = CH3
2e: R = H; R1 = C3H7
3f: R = t-Bu; R1 = C3H7
3g: R = H; R1 = CH2Ph
2f: R = t-Bu; R1 =CH2CH2O-(2-COCH3)C6H4
3h: R = t-Bu; R1 = CH2Ph
3i R = H; R1 = CH2CO2C2H5
3j: R = t-Bu; R1 = CH2CO2C2H5
3k: R = H; R1 = CH2CN
3l: R = t-Bu; R1 = CH2CN
3m: R = H; R1 = CH2CH2O-(2-COCH3)C6H4
3n: R = t-Bu; R1 = CH2CH2O-(2-COCH3)C6H4
Scheme 1. Synthesis of mono- and 1,3-dialkyl ethers of calix[4]arenes under microwave irradiation.
OR
OR
pentaethyleneglycolditosylate
Cs2CO3, ACN, reflux, 10-12 h
O
O
O
O
RO
OH
OR
OH
O
O
a: R = C8H17 (58%)
b: R = C3H7 (79%)
4
1,3-alternate
Scheme 2. Synthesis of cesium ion selective calix[4]crown-6 1,3-alternate ionophores from 1,3-dialkoxy calix[4]arene.
3. Calixarenes in Action; Mandolini, L., Ungaro, R., Eds.; Imperial College Press:
London, 2000.
4. Calixarenes; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer:
Dordrecht, The Netherlands, 2001.
5. Vicens, J., Böhmer, V., Eds.Calixarenes, A Versatile Class of Compounds; Kluwer:
Dordrecht, 1991. and references cited therein.
6. Böhmer, V. Angew. Chem., Int. Ed. 1995, 34, 713. and references cited therein.
7. Gutsche, C. D. In Calixarenes Monographs in Supramolecular Chemistry; Stoddart,
F. J., Ed.; Royal Society of Cambridge, 1989; Vol. 1,. and references cited therein.
8. Groenen, L. C.; Reinhoudt, D. N. In Supramolecular Chemistry; Belzani, V., de
Cola, L., Eds.; Kluwer: Dordrecht, 1991; p p 51.
found to be the base of choice for cone-selective 1,3-dietherifica-
tion of calix[4]arenes under MWI.
Finally, both 1,3-di-n-octyloxycalix[4]arene (3a) and 1,3-di-n-
propyloxy calix[4]arene (3e) were converted into 1,3-di-n-
octyloxycalix[4]arene-crown-619 (4a) and 1,3-di-n-propyloxycalix
[4]arene-crown-619 (4b), respectively, in 1,3-alternate conforma-
tions using Cs2CO3/pentaethyleneglycol ditosylate/acetonitrile
(Scheme 2).
In conclusion, we have developed a microwave-assisted proto-
col for the etherification of phenolic groups of calix[4]arene/
4-tert-butylcalix[4]arene with a variety of elctrophiles (2.5 equiv)
to afford 1,3-dialkoxycalix[4]arenes as major/sole product in good
to high yields. The reaction times were found to be much shorter
(30–150 min) when compared to conventional refluxing condi-
tions which required several hours to days for completion. More-
over there is no need for anhydrous reaction conditions and
calix[4]arene ethers were formed only in cone conformations. Thus
the present protocol will be very useful in the multi-step synthesis
of complex calix[4]arene derivatives as most of those involve
1,3-dietherification in the very first step.
9. Boyko, V. I.; Matvieiev, Y. I.; Klyachina, M. A.; Yesypenko, O. A.; Shishkina, S. V.;
Shishkin, O. V.; Kalchenko, V. I. Tetrahedron 2009, 65, 4220.
10. Boyko, V. I.; Yakovenko, A. V.; Matvieiev, Y. I.; Kalchenko, O. I.; Shishkin, O. V.;
Shishkina, S. V.; Kalchenko, V. I. Tetrahedron 2008, 64, 7567.
11. Yakovenko, A. V.; Boyko, V. I.; Kalchenko, V. I.; Baldini, L.; Casnati, A.; Sansone,
F.; Ungaro, R. J. Org. Chem. 2007, 72, 3223.
12. Tabakci, M.; Menon, S.; Yilmaz, M. Tetrahedron 2007, 63, 6861.
13. Hosseini, A.; Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C. A.; Boyd, P. D. W. J.
Am. Chem. Soc. 2006, 128, 15903.
14. Creaven, B. S.; Gernon, T. L.; McGinley, J.; Moore, A.-M.; Toftlund, H.
Tetrahedron 2006, 62, 9066.
15. Chawla, H. M.; Pant, N.; Srivastava, B. Tetrahedron Lett. 2005, 46, 7259.
16. Li, Z.-T.; Ji, G.-J.; Zhao, C.-X.; Yuan, S.-D.; Ding, H.; Huang, C.; Du, A.-L.; Wei, M. J.
Org. Chem. 1999, 64, 3572.
17. Scheerder, J.; Fochi, M.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1994,
59, 7815.
18. Halouani, H.; Dumazet-Bonnamour, I.; Perrin, M.; lamartine, R. J. Org. Chem.
2004, 69, 6521.
19. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing,
M.-J.; Egberink, R. J. M.; Jong, F. D.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117,
2767.
Supplementary data
Supplementary data associated with this article can be found, in
20. Nijenhuis, W.; Buitenhuis, E.; de Jong, F.; Sudholter, E. J. R.; Reinhoudt, D. N. J.
Am. Chem. Soc. 1991, 113, 7963.
21. Bocchi, C.; Careri, M.; Casnati, A.; Mori, G. Anal. Chem. 1995, 67, 4234.
22. Salorinne, K.; Nissinen, M. J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 11.
23. Dijkstra, P. J.; Brunink, J. A. J.; Bugge, K.-E.; Reinhoudt, D. N.; Harkema, S.;
Ungaro, R.; Ugozzoli, F.; Ghidini, E. J. Am. Chem. Soc. 1989, 111, 7567.
24. Ghidini, E.; Ugozzoli, F.; Ungaro, R.; Harkema, S.; El-Fadl, A. A.; Reinhoudt, D. N.
J. Am. Chem. Soc. 1990, 112, 6979.
References and notes
1. Radioactive Waste Management and Disposal; Cecille, L., Ed.; Elsevier Science
Publisher: London, New York, 1991.
2. Schulz, W. W.; Bray, L. A. Sep. Sci. Technol. 1987, 22, 191.
25. Caddick, S. Tetrahedron 1995, 51, 10403.