632
J. Cossy et al.
LETTER
(14) 5a: IR (neat): 3398, 1654, 1577, 1458, 1378, 1071, 968 cm-1.
1H NMR (300 MHz, CDCl3) : 5.74 (dq, J = 6.2 and 15.4 Hz,
1H), 5.56 (ddd, J = 1.5, 7.4 and 15.5 Hz, 1H), 4.00 (dd, J = 3.3
and 7.4 Hz, 1H), 3.72-3.60 (m, 1H), 1.72 (dd, J = 1.1 and 6.2
Hz, 3H), 1.50-1.20 (m, 10H), 0.92-0.83 (m, 3H). 13C NMR (75
MHz, CDCl3) : 129.5 (d), 128.8 (d), 75.7 (d), 74.1 (d), 32.1
(t), 31.6 (t), 29.2 (t), 25.7 (t), 22.5 (t), 17.8 (q), 14.0 (q). MS
(CI, NH3) m/z: 204 (MH++NH3), 202 (4), 187 (2), 186 (18),
175 (5), 174 (48), 172 (5), 169 (7), 141 (3), 123 (100), 109
(12), 107 (2). HRMS (CI) calculated for C11H26O2N
(MH++NH3): 204.1964, found: 204.1970.
(15) (5b: IR (neat): 3369, 1718, 1449, 1377, 1262, 1084, 968, 800,
739 cm-1. 1H NMR (300 MHz, CDCl3) : 5.87-5.73 (m, 1H),
5.62 (ddd, J = 1.5, 7.3 and 15.4 Hz, 1H), 4.17 (m, 1H), 3.41
(dd, J = 3.7 and 8.1 Hz, 1H), 2.10-0.80 (m, 11H), 1.75 (dd,
J = 1.1 and 5.9 Hz). 13C NMR (75 MHz, CDCl3) : 129.9 (d),
128.5 (d), 78.0 (d), 73.2 (d), 39.6 (d), 28.7 (t), 28.6 (t), 26.3 (t),
25.8 (t), 25.6 (t), 17.8 (q). MS (EI) m/z: 184 (M+, 0.07), 113
(7), 112 (6), 96 (8), 95 (100), 93 (5), 83 (8), 81 (6), 79 (3), 73
(4), 72 (70), 71 (16), 70 (4), 69 (10), 67 (16), 57 (16), 55 (16),
53 (6).
(16) Pons, J.-M.; Santelli, M. J. Org. Chem. 1989, 54, 877.
Schobert, R. Angew. Chem., Int. Ed. Engl. 1988, 27, 855.
Handa, Y.; Inanaga, J. Tetrahedron Lett. 1987, 28, 5717.
(17) Becker, H.; Soler, M. A.; Sharpless, K. B. Tetrahedron 1995,
51, 1345. Tanaka, S.; Yasuda, A.; Yamamoto, H.; Nozaki, H.
J. Am. Chem. Soc. 1975, 97, 3252.
(18) Dana, G.; Chuche, J.; Monot, M.-R. Bull. Soc. Chim. Fr. 1967,
3308.
(19) Dana, G.; Thuan, S. L. T. Bull. Soc. Chim. Fr. 1973, 1676.
(20) Marshall, J. A.; Welmaker, G. J. Tetrahedron Lett. 1991, 32,
2101.
products. Clearly, it should be possible to improve the
yields and reaction stoichiometry through the use of alter-
native spacer groups and resins. We hope to clarify these
issues in future studies.
References and Notes
(1) For reviews, see: Brown, R. C. D. J. Chem. Soc., Perkin
Trans. 1 1998, 3293. Booth, S.; Hermkens, P. H. H.;
Ottenheijm, H. C. J.; Rees, D. C. Tetrahedron 1998, 54,
15385. Blackburn, C.; Albericio, F.; Kates, S. A. Drugs of the
Future 1997, 22, 1007. Hermkens, P. H. H.; Ottenheijm, H. C.
J.; Rees, D. C. Tetrahedron 1997, 53, 5643. Balkenhohl, F.;
Von dem Bussche-Hünnefeld, C.; Lansky, A.; Zechel, C.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2288. Hermkens, P. H.
H.; Ottenheijm, H. C. J.; Rees, D. C. Tetrahedron 1996, 52,
4527. Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96,
555. Früchtel, J. S.; Jung, G. Angew. Chem., Int. Ed. Engl.
1996, 35, 17. Terrett, N. K.; Gardner, M.; Gordon, D. W.;
Kobylecki, R. J.; Steele, J. Tetrahedron 1995, 51, 8135.
Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.;
Gallop, M. A. J. Med. Chem. 1994, 37, 1233.
(2) Marshall, J. A. Chem. Rev. 1996, 96, 31.
(3) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1996, 61, 105.
(4) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481.
(5) Cossy, J.; Rasamison, C.; Gomez Pardo, D. Unpublished
results.
(6) Pratt, A. J.; Thomas, E. J. J. Chem. Soc., Chem. Commun.
1982, 1115.
(7) Pratt, A. J.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1989,
1521.
(21) Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1996, 61,
8732. Marshall, J. A.; Welmaker, G. J. J. Org. Chem. 1992,
57, 7158.
(22) Marshall, J. A.; Jablonowski, J. A.; Welmaker, G. J. J. Org.
Chem. 1996, 61, 2904. Marshall, J. A.; Jablonowski, J. A.;
Elliott, L. M. J. Org. Chem. 1995, 60, 2662.
(8) Preparation of support-bound -(benzoyloxy)crotylstannane
6: To a suspension of carboxypolystyrene (1.0 g, 2 mmol/g, 2
mmol) in CH2Cl2 (20 mL) at r.t., were added successively
EDCI (1.9 g, 10 mmol, 5 equiv.), DMAP (0.74 g, 6 mmol, 3
equiv.) and 1 (3.6 g, 10 mmol, 5 equiv.). After 16 h, the resin
was filtered, alternately thoroughly washed with CH2Cl2 and
Et2O and then dried in vacuo to give the crotylstannane
supported reagent 6. IR (KBr): 3022, 2922, 2844, 1728, 1700,
1350 cm-1. 13C NMR (75 MHz, CDCl3) : 130.6 (d), 127.8 (m,
polystyrene), 119.4 (d), 71.9 (d), 40.3 (m, polystyrene), 28.8
(t), 27.2 (t), 17.7 (q), 13.6 (q), 9.5 (t).
(9) The carboxylic polystyrene resin (1% DVB cross-linked) with
a loading of 2 mmol/g was purchased from Advanced
Chemtech.
(10) Leznoff, C. C.; Dixit, D. M. Can. J. Chem. 1977, 55, 3351.
(11) The principal drawback in the use of dicyclohexyl-
carbodiimide (DCC) is the formation of the dichloromethane-
insoluble dicyclohexylurea (DCU) during acylation. The
EDCI urea is soluble in dichloromethane.
(23) Keck, G. E.; Savin, K. A.; Cressman, E. N. K.; Abbott, D. E.
J. Org. Chem. 1994, 59, 7889.
(24) General conditions for the preparation of lactones: To a
solution of InBr3 (253 mg, 0.72 mmol, 3 equiv.) in EtOAc at
78 °C, was added resin 6 (200 mg, 0.24 mmol, 1 equiv.). The
resulting slurry was allowed to reach r.t. before addition of
RCHO (0.72 mmol, 3 equiv.) at 78 °C. After 5 h at r.t., the
resin was filtered, alternately thoroughly washed with CH2Cl2
and Et2O and then dried in vacuo. The resin was then
suspended in MeOH/THF (1/4) (5 mL) at r.t. After addition of
NaOMe (259 mg, 4.80 mmol, 20 equiv.), the resulting slurry
was stirred at 40 °C for 1 h, before neutralization by an
aqueous solution of HCl (1.2 M). The solution was collected
by filtration, dried over MgSO4 and the solvent was removed
in vacuo to give lactols 13. To a solution of lactol (0.24 mmol,
1 equiv.) in CH2Cl2 (5 mL) at r.t., were added successively
molecular sieves (310 mg), NaOAc (9 mg, 0.12 mmol, 0.5
equiv.) and PCC (155 mg, 0.72 mmol, 3 equiv.). The mixture
was stirred at r.t. for 6 h before filtration through silica gel
(EtOAc/cyclohexane: 70/30). The solvent was then removed
in vacuo to give lactones.
(12) Dilley, G. J.; Durgin, T. L.; Powers, T. S.; Winssinger, N. A.;
Zhu, H.; Pavia, M. R. Mol. Div. 1995, 1, 13.
(13) General conditions for the preparation of 1,2-diols: To a
solution of InBr3 (102 mg, 0.29 mmol, 1.2 equiv.) and RCHO
(4.80 mmol, 20 equiv.) in EtOAc at 78 °C, was added resin
6 (200 mg, 0.24 mmol, 1 equiv.). The mixture was allowed to
reach r.t. After 5 h the resin was filtered, alternately
thoroughly washed with CH2Cl2 and Et2O and then dried in
vacuo. The resin was then suspended in MeOH/THF (1/4)
(5 mL) at r.t. After addition of NaOMe (259 mg, 4.80 mmol,
20 equiv.), the resulting slurry was stirred at 40 °C for 1 h
before neutralization by an aqueous solution of HCl (1.2 M).
The solution was collected by filtration, dried over MgSO4
and the solvent was removed in vacuo. Purification of the
crude material by flash chromatography (EtOAc/petroleum
ether: 20/80) afforded 1,2-diols.
(25) Satoh, M; Washida, S.; Takeuchi, S.; Asaoka, M.
Heterocycles 2000, 52, 227. Jephcote, V. J.; Pratt, A. J.;
Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1989, 1529.
(26) Fukuzawa, S.-I.; Seki, K.; Tatzuzawa, M.; Mutoh, K. J. Am.
Chem. Soc. 1997, 119, 1482.
(27) Frenette, R.; Monette, M.; Bernstein, M. A.; Young, R. N.;
Verhoeven, T. B. J. Org. Chem. 1991, 56, 3083.
Synlett 2001, No. 5, 629–633 ISSN 0936-5214 © Thieme Stuttgart · New York