reaction with an amine, the imine formed is reduced by the
transition metal hydride formed in the first step, yielding a
higher order amine.6 Since the early 80s, transition metal
complexes,7ꢀ18 in particular iridium and ruthenium, have
been shown to be active for this transformation. We have
recently used this method to synthesize nitrogen-containing
pseudodisaccharides.16 In general, iridium8e,13,14,18 complexes
are more reactive than ruthenium-based catalysts, making
possible the use of iridium loadings as low as 0.1 mol %.18e
Recently, Williams, Beller and co-workers8f were able
to obtain good yields in the N-alkylation of indoles by using
0.2ꢀ0.5 mol % of the dimeric Shvo’s ruthenium catalyst
(0.4ꢀ1 mol % Ru) at 110 °C. Also, Madsen and co-workers
reported an elegant synthesis of substituted indoles using
readily available RuCl3 (1 mol %) at 170 °C.15b Williams
also reported that small loadings of [Ru(p-cymene)Cl2]2
(1 mol % Ru) afford excellent results in the N-alkylation
of sec-amines, forming tert-amines.8c
Figure 1. CNN-Ruthenium complexes 1 and 2.
neither 1 nor the methylated derivative complex 2 have been
used in the reduction of imines. Here, we communicate that
the readily available Ru(II)-CNN pincer complex 2(Figure1)
is, however, an excellent catalyst for the alkylation of
amines by alcohols, which is thought to proceed by reduction
of imine intermediates. Ruthenium complex 2 catalyzes the
alkylation of anilines and heteroaromatic amines by alcohols
(including pyridine-, furan-, and thiophene-substituted
alcohols) with high efficiency, using low catalyst loadings
(1 mol %). A large substrate scope is demonstrated, and
products derived from polyalkylation are not detected,
making this ruthenium system an excellent catalyst for the
synthesis of sec-amines.
Aniline (3a) and benzyl alcohol (4) were chosen as model
substrates. In the presence of K2CO3 (30 mol %), neither 1
nor 2 (2.5 mol %) afforded the desired product in good
yield. However, when KOt-Bu was used instead of K2CO3,
complex 2 catalyzed the formation of amine 5 in excellent
yield, while only moderate yields were obtained with 1.
This is in high contrast with the results obtained by Baratta
and co-workers, who found complex 1 to be significantly
more reactive than 2 in the reduction of ketones under
hydrogen transfer conditions.19 Further optimization al-
lowed us to use catalyst loadings as low as 1 mol % when
combined with stoichiometric amounts of KOt-Bu
(Scheme 1a, and Table S1, Supporting Information).
Similarly, 2-amino pyridine 6a gave the corresponding
alkylated amine (7) in quantitative yield (91% isolated,
Scheme 1b). In all cases, higher yields were obtained when
MS 4 A were added to the reaction mixture.
Having established the optimal reaction conditions we
turned our attention to the use of a ferrocenyl-substituted
alcohol (8) as alkylating reagent. Quantitative yields of the
corresponding sec-amines were obtained from a range of
substituted anilines (3aꢀf) as well as heteroaromatic amines
(6aꢀc) with different electronic properties (Scheme 2). The
secondary amines obtained (9aꢀf, 10aꢀc) were isolated in
good to excellent yields.
The catalyst system [Ru 2 (1 mol %)/KOt-Bu] is highly
selective and yielded monoalkylated products exclusively,
even when excess of alcohol was used (see Supporting
Information). Hence, it was of interest to explore whether
diamines could be N,N0-dialkylated (i.e., introduction of
one substituent on each nitrogen). Few reports on the
synthesis of such types of compounds are available in the
literature,20 and most of them yield a mixture of products
Baratta and co-workers have communicated that Ru-
(II)-CNN (C = carbon; N = nitrogen) pincer complex 1
affords impressive TONs (1.7 ꢁ 105) in the reduction of
ketones under hydrogen transfer conditions.19 However,
(9) (a) Tillack, A.; Hollmann, D.; Michalik, D.; Beller, M. Tetrahe-
dron Lett. 2006, 47, 8881. (b) Hollmann, D.; Tillack, A.; Michalik, D.;
Jackstell, R.; Beller, M. Chem. Asian J. 2007, 2, 403. (c) Hollmann, D.;
Bahn, S.; Tillack, A.; Beller, M. Angew. Chem., Int. Ed. 2007, 46, 8291.
€
(d) Bahn, S.; Tillack, A.; Imm, S.; Mevius, K.; Michalik, D.; Hollmann,
D.; Neubert, L.; Beller, M. ChemSusChem 2009, 2, 551. (e) Imm, S.;
€
Bahn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
€
2010, 49, 8126. (f) Imm, S.; Bahn, S.; Zhang, M.; Neubert, L.; Neumann,
H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Angew. Chem., Int. Ed.
€
2011, 50, 7599. (g) Zhang, M.; Imm, S.; Bahn, S.; Neumann, H.; Beller,
M. Angew. Chem., Int. Ed. 2011, 50, 11197.
(10) (a) Kim, J. W.; Yamaguchi, K.; Mizuno, N. J. Catal. 2009, 263,
205. (b) Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem.;Eur. J.
2010, 16, 7199.
ꢀ
(11) (a) Martınez, R.; Ramon, D. J.; Yus, M. Org. Biomol. Chem.
ꢀ
2009, 7, 2176. (b) Martınez-Asencio, A.; Ramon, D. J.; Yus, M.
ꢀ
Tetrahedron Lett. 2010, 51, 325. (c) Cano, R.; Ramon, D. J.; Yus, M.
ꢀ
J. Org. Chem. 2011, 76, 5547. (d) Martınez-Asencio, A.; Ramon, D. J.;
Yus, M. Tetrahedron 2011, 67, 3140. (e) Martınez-Asencio, A.; Yus, M.;
ꢀ
Ramon, D. J. Synthesis 2011, 3730.
(12) Del Zotto, A.; Baratta, W.; Sandri, M.; Verardo, G.; Rigo, P.
Eur. J. Inorg. Chem. 2004, 524.
(13) (a) Fujita, K.-i.; Li, Z.; Ozeki, N.; Yamaguchi, R. Tetrahedron
Lett. 2003, 44, 2687. (b) Fujita, K.-i.; Yamaguchi, R. Synlett 2005, 4, 560.
(c) Fujita, K.-i.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943.
(d) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. J. Am. Chem. Soc. 2010,
132, 15108. (e) Kawahara, R.; Fujita, K. I.; Yamaguchi, R. Adv. Synth.
Catal. 2011, 353, 1161.
ꢀ
(14) (a) Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. Chem.;Eur.
J. 2008, 14, 11474. (b) Segarra, C.; Mas-Marza, E.; Mata, J. A.; Peris, E.
Adv. Synth. Catal. 2011, 353, 2078.
(15) (a) Nordstrøm, L. U.; Madsen, R. Chem. Commun. 2007, 5034.
(b) Tursky, M.; Lorentz-Petersen, L. L. R.; Olsen, L. B.; Madsen, R.
Org. Biomol. Chem. 2010, 8, 5576. (c) Monrad, R. N.; Madsen, R. Org.
Biomol. Chem. 2011, 9, 610.
(16) Cumpstey, I.; Agrawal, S.; Borbas, K. E.; Martın-Matute, B.
Chem. Commun. 2011, 47, 7827.
(17) Zhao, Y.; Foo, S. W.; Saito, S. Angew. Chem., Int. Ed. 2011, 50,
3006.
(18) (a) Blank, B.; Madalska, M.; Kempe, R. Adv. Synth. Catal. 2008,
350, 749. (b) Blank, B.; Michlik, S.; Kempe, R. Chem.;Eur. J. 2009, 15,
3790. (c) Blank, B.; Michlik, S.; Kempe, R. Adv. Synth. Catal. 2009, 351,
2903. (d) Blank, B.; Kempe, R. J. Am. Chem. Soc. 2010, 132, 924. (e)
Michlik, S.; Kempe, R. Chem.;Eur. J. 2010, 16, 13193.
(19) (a) Baratta, W.; Bosco, M.; Chelucci, G.; Zotto, A. D.; Siega, K.;
Toniutti, M.; Zangrando, E.; Rigo, P. Organometallics 2006, 25, 4611.
(b) Baratta, W.; Ballico, M.; Zotto, A. D.; Herdtweck, E.; Magnolia, S.;
Peloso, R.; Siega, K.; Toniutti, M.; Zangrando, E.; Rigo, P. Organome-
tallics 2009, 28, 4421.
Org. Lett., Vol. 14, No. 6, 2012
1457