Insights to “short” and “long” RORγt inverse agonists
MC Yu et al.
11
agonists can be important to the drug discovery process and
therefore deserve more experiments to define their regulatory
functions in the future.
6. Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-
t (RORγt) inhibitors in clinical development for the treatment of autoimmune
diseases:
a patent review (2016-present). Expert Opin Ther Pat. 2019;29:
663–74.
7. Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating auto-
immune diseases with retinoic acid receptor-related orphan receptor-gamma
ACCESSION CODES
(RORgamma or RORc) inhibitors: hits and misses.
J Med Chem. 2018;61:
The coordinates and structural factors have been deposited in the
Protein Data Bank with the accession codes 6LOB (6), 6LOA (7d)
and 6LO9 (7h). The authors will release the atomic coordinates
and experimental data upon article publication.
10976–95.
8. Qiu R, Wang Y. Retinoic acid receptor-related orphan receptor γt (RORγt) agonists
as potential small molecule therapeutics for cancer immunotherapy. J Med
Chem. 2018;61:5794–804.
9. Wang Y, Yang T, Liu Q, Ma Y, Yang L, Zhou L, et al. Discovery of N-(4-aryl-5-
aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists. Bioorgan Med
Chem. 2015;23:5293–302.
10. Rene O, Fauber BP, Boenig GD, Burton B, Eidenschenk C, Everett C, et al. Minor
structural change to tertiary sulfonamide RORc ligands led to opposite
mechanisms of action. ACS Med Chem Lett. 2015;6:276–81.
11. Yukawa T, Nara Y, Kono M, Sato A, Oda T, Takagi T, et al. Design, synthesis, and
biological evaluation of retinoic acid-related orphan receptor gammat (ROR-
gammat) agonist structure-based functionality switching approach from in house
RORgammat inverse agonist to RORgammat agonist. J Med Chem. 2019;62:
1167–79.
ACKNOWLEDGEMENTS
We are extremely grateful to the National Centre for Protein Science Shanghai
(Protein Expression and Purification system) for their instrument support and
technical assistance. We thank the staff from the BL17U1 and BL19U1 beamlines at
the Shanghai Synchrotron Radiation Facility (SSRF) for assistance during data
collection. We gratefully acknowledge the financial support from the National Natural
Science Foundation of China (Grant Numbers: 81703415; 81573276; 81874287;
81973163), the K. C. Wong Education to CL, the Fudan-SIMM Joint Research Fund
(Grant Number: FUSIMM20174007), the CAS Strategic Priority Research Program
(Grant Number: XDA12020372), the Shanghai Biopharmaceutical Science and
Technology Supporting Plan (Grant Number: 17431902100; 19431900100), the
National Science and Technology Major Project (Grant Number: 2018ZX09711002-
003-014), the Natural Science Foundation of Shanghai (Grant Number: 19ZR1436700),
and the China Postdoctoral Science Foundation (Grant Number: 2019M651383).
12. Wang Y, Cai W, Tang T, Liu Q, Yang T, Yang L, et al. From RORγt agonist to two
types of RORγt inverse agonists. ACS Med Chem Lett. 2018;9:120–4.
13. Huang Y, Yu M, Sun N, Tang T, Yu F, Song X, et al. Discovery of carbazole
carboxamides as novel RORγt inverse agonists. Eur J Med Chem. 2018;148:
465–76.
14. Witosch J, Wolf E, Mizuno N. Architecture and ssDNA interaction of the Timeless-
Tipin-RPA complex. Nucleic Acids Res. 2014;42:12912–27.
15. Gaffarogullari EC, Krause A, Balbo J, Herten DP, Jaschke A. Microscale thermo-
phoresis provides insights into mechanism and thermodynamics of ribozyme
catalysis. RNA Biol. 2013;10:1815–21.
16. Parker JL, Newstead S. Molecular basis of nitrate uptake by the plant nitrate
transporter NRT1.1. Nature 2014;507:68–72.
17. Wang Q, Zhang K, Cui Y, Wang Z, Pan Q, Liu K, et al. Upgrade of macromolecular
crystallography beamline BL17U1 at SSRF. Nucl Sci Tech. 2018;29:68.
18. Zhang W, Tang J, Wang S, Wang Z, Qin W, He J. The protein complex crystal-
lography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility. Nucl
Sci Tech. 2019;30:170.
AUTHOR CONTRIBUTIONS
MCY, FY, XYD, NNS, QX, HLJ, KXC, CL, XML, SJC, and YHW developed the hypothesis,
designed the experiments, and revised the manuscript. MCY, ZYJ, YFH, YRY, and CZ
designed and synthesized the compounds. FY, ZFC, and SQG performed the
crystallographic studies. MCY, XYD, and NNS conducted the MD simulation and data
analysis. All authors read and approved the final manuscript.
ADDITIONAL INFORMATION
contains supplementary material, which is available to authorized users.
19. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. HKL-3000: the integration
of data reduction and structure solution–from diffraction images to an initial
model in minutes. Acta Crystallogr D Biol Crystallogr. 2006;62:859–66.
20. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a
comprehensive Python-based system for macromolecular structure solution. Acta
Crystallogr D Biol Crystallogr. 2010;66:213–21.
Competing interests: The authors declare no competing interests.
21. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.
22. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C.
ff14SB: improving the accuracy of protein side chain and backbone parameters
from ff99SB. J Chem Theory Comput. 2015;11:3696–713.
23. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of
a general amber force field. J Comput Chem. 2004;25:1157–74.
24. Harvey MJ, De Fabritiis G. An implementation of the smooth particle Mesh Ewald
method on GPU hardware. J Chem Theory Comput. 2009;5:2371–7.
25. Fauber BP, Magnuson S. Modulators of the nuclear receptor retinoic acid
receptor-related orphan receptor-γ (RORγ or RORc). J Med Chem. 2014;57:
5871–92.
26. Sun N, Yuan C, Ma X, Wang Y, Gu X, Fu W. Molecular mechanism of action of
RORγt agonists and inverse agonists: insights from molecular dynamics simula-
tion. Molecules. 2018;23:3181.
REFERENCES
1. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The
orphan nuclear receptor RORgammat directs the differentiation program of
proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.
2. Yuan C, Chen H, Sun N, Ma X, Xu J, Fu W. Molecular dynamics simulations on
RORgammat: insights into its functional agonism and inverse agonism. Acta
Pharmacol Sin. 2019;40:1480–9.
3. Li X, Anderson M, Collin D, Muegge I, Wan J, Brennan D, et al. Structural studies
unravel the active conformation of apo RORgammat nuclear receptor and a
common inverse agonism of two diverse classes of RORgammat inhibitors. J Biol
Chem. 2017;292:11618–30.
4. Kallen J, Izaac A, Be C, Arista L, Orain D, Kaupmann K, et al. Structural states of
RORgammat: X-ray elucidation of molecular mechanisms and binding interac-
tions for natural and synthetic compounds. ChemMedChem. 2017;12:1014–21.
5. Mahalingam D, Wang J, Hamilton EP, Sarantopoulos J, Nemunaitis J, Weems G,
et al. Phase 1 open-label, multicenter study of first-in-class RORγ agonist LYC-
55716 (Cintirorgon): safety, tolerability, and preliminary evidence of antitumor
activity. Clin Cancer Res. 2019;25:3508–16.
27. Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, et al. Small-molecule RORgammat
antagonists inhibit
T helper 17 cell transcriptional network by divergent
mechanisms. Immunity. 2014;40:477–89.
Acta Pharmacologica Sinica (2020) 0:1 – 11