NJC
Paper
4 (a) E. Quartapelle Procopio, M. Mauro, M. Panigati, D. Donghi,
P. Mercandelli, A. Sironi, G. D’Alfonso and L. De Cola, J. Am.
Chem. Soc., 2010, 132, 14397–14399; (b) M. Panigati, M. Mauro,
D. Donghi, P. Mercandelli, P. Mussini, L. De Cola and
G. D’Alfonso, Coord. Chem. Rev., 2012, 256, 1621–1643.
5 (a) M. Mauro, E. Quartapelle Procopio, Y. Sun, C.-H. Chien,
D. Donghi, M. Panigati, P. Mercandelli, P. Mussini,
G. D’Alfonso and L. De Cola, Adv. Funct. Mater., 2009, 19,
2607–2614; (b) M. Mauro, C.-H. Yang, C.-Y. Shin,
M. Panigati, C.-H. Chang, G. D’Alfonso and L. De Cola,
Adv. Mater., 2012, 24, 2054–2058.
TiO2. Moreover the bulky triarylamine moiety also reduces the
back reaction of the injected electron with the electrolyte.
Compared to the standard ruthenium-based N719 dye, the
maximum power conversion efficiency of 1% obtained for 3 is
obviously too low. However, the data here collected have
provided a sufficiently clear picture of the critical factors and
of the lines to follow for improving the performances. The
future molecular design will take advantage from the possibility
to independently tune the ground-state energy levels of the
dirhenium diazine complexes, since their frontier orbitals are
clearly localized on different regions of the molecule.
6 F. Nastasi, F. Puntoriero, M. Natali, M. Mba, M. Maggini,
P. Mussini, M. Panigati and S. Campagna, Photochem.
Photobiol. Sci., 2015, 14, 909–918.
So a different choice of the diazine ligand will permit to raise
the LUMO level, to overcome the most serious problem con-
cerning the electron injection into TiO2, which is certainly
represented by the excessive stabilization of the p* orbitals of
the diazine in the complexes here investigated.
On the other hand, wider light harvesting and efficient hole-
transfer towards the periphery of the molecule could be obtained
through the introduction of a more conjugated moiety on the
triarylamine ancillary ligand. Moreover metal oxide photoelec-
trodes other than TiO2, such as SnO2, and different electrolytes,
such as those based on cobalt complexes, could be used. Work
towards these directions is in progress in our laboratory.
However, it must be pointed out that, due to the novelty of the
employed dyes, the present work did not aim to optimize the cell
performances, but rather to understand the relationships between
the molecular structure of the complexes and their spectral and
photovoltaic properties. This result has been attained.
¨
7 B. O’Regan and M. Gratzel, Nature, 1991, 353, 737–740.
8 T. M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi,
V. Zardetto, A. Reale and A. Di Carlo, J. Mater. Chem. A, 2014,
2, 10788–10817.
9 A. Fakharuddin, R. Jose, T. M. Brown, F. Fabregat-Santiago
and J. Bisquert, Energy Environ. Sci., 2014, 7, 3952–3981.
10 (a) M. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,
¨
E. Mu¨ller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am.
Chem. Soc., 1993, 115, 6382–6390; (b) K. Kalyanasundaram
¨
and M. Gratzel, Coord. Chem. Rev., 1998, 177, 347–414.
11 S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and
V. Balzani, Top. Curr. Chem., 2007, 280, 117–214.
12 M. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni,
¨
G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel,
J. Am. Chem. Soc., 2005, 127, 16835–16847.
13 D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, R. Humphry-
Two final observations, from the point of view of coordina-
tion chemistry. The survival of hydrido complexes in the media
and under the operating conditions of solar cells is noteworthy.
Clearly the bridging coordination of the hydride contributes
to this peculiar stability. Moreover, the three-step synthetic
procedure here developed has a wider scope than the prepara-
tion of the compounds here described and opens the way to the
obtainment of a large number of dinuclear complexes of this
family, tailored for specific applications.
¨
Baker, S. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc.,
2006, 128, 4146–4154.
14 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E.
Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger,
¨
M. K. Nazeerruddin and M. Gratzel, Nat. Chem., 2014, 6,
242–247.
15 (a) S. Ferrere and B. A. Gregg, J. Am. Chem. Soc., 1998, 120,
843–844; (b) P. Balraju, M. Kumar, M. S. Roy and
G. D. Sharma, Synth. Met., 2009, 159, 1325–1331.
Acknowledgements
¨
16 (a) T. Bessho, E. C. Constable, M. Gratzel, A. H. Redondo,
C. E. Housecroft, W. Kylberg, M. K. Nazeeruddin,
M. Neuburger and S. Schaffner, Chem. Commun., 2008,
3717–3719; (b) C. L. Linfoot, P. Richardson, T. E. Hewat,
O. Moudam, M. M. Forde, A. Collins, F. White and
N. Robertson, Dalton Trans., 2010, 39, 8945–8956.
17 (a) W. Wu, X. Xu, H. Yang, J. Hua, X. Zhang, L. Zhang,
Y. Longa and H. Tian, J. Mater. Chem., 2011, 21, 10666–10671;
(b) E. A. M. Geary, L. J. Yellowlees, L. A. Jack, I. D. H. Oswald,
S. Parsons, N. Hirata, J. R. Durrant and N. Robertson, Inorg.
Chem., 2005, 44, 242–250.
18 B. Bozic-Weber, E. C. Constable and C. E. Housecroft,
Coord. Chem. Rev., 2013, 257, 3089–3106.
19 (a) J. B. Asbury, E. Hao, Y. Wang and T. Lian, J. Phys. Chem.
B, 2000, 104, 11957–11964; (b) N. A. Anderson, X. Ai,
D. Chen, D. L. Mohler and T. Lian, J. Phys. Chem. B, 2003,
107, 14231–14239.
M. P., P. M., and G. D. thank the Italian Ministero dell’Istruzione,
`
Universita e Ricerca, for financial support (PRIN-2012A4Z2RY)
and F. D. R. and T. M. B. acknowledge ‘‘Polo Solare Organico’’
Regione Lazio for funding.
Notes and references
1 D. Donghi, G. D’Alfonso, M. Mauro, M. Panigati, P. Mercandelli,
A. Sironi, P. Mussini and L. D’Alfonso, Inorg. Chem., 2008, 47,
4243–4255.
2 M. Panigati, D. Donghi, G. D’Alfonso, P. Mercandelli, A. Sironi
and L. D’Alfonso, Inorg. Chem., 2006, 45, 10909–10921.
3 A. Raimondi, M. Panigati, D. Maggioni, L. D’Alfonso,
P. Mercandelli, P. Mussini and G. D’Alfonso, Inorg. Chem.,
2012, 51, 2966–2975.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016
New J. Chem.