Organic Letters
Letter
Synlett 2004, 1113. For alkyl alcohols, see: (h) Iourtchenko, A.;
Sinou, D. J. Mol. Catal. A 1997, 122, 91. (i) Lam, F. L.; Au Yeung, T.
T.-L.; Kwong, F. Y.; Zhou, Z.; Wong, K. Y.; Chan, A. S. C. Angew.
Chem., Int. Ed. 2008, 47, 1280. (j) Ye, F.; Zheng, Z.-J.; Li, L.; Yang, K.-
F.; Xia, C. G.; Xu, L.-W. Chem.Eur. J. 2013, 19, 15452.
̀
(k) Caldentey, X.; Pericas, M. A. J. Org. Chem. 2010, 75, 2628.
(l) Liu, Z.; Du, H. Org. Lett. 2010, 12, 3054. (m) Kato, M.; Nakamura,
T.; Ogata, K.; Fukuzawa, S. Eur. J. Org. Chem. 2009, 5232. For a
recent report based on Ir-catalysts, see: (n) Ueno, S.; Hartwig, J. F.
Angew. Chem., Int. Ed. 2008, 47, 1928.
(6) Few phosphinite/phosphine−thioether ligands have been
successfully applied, and those that do are limited in substrate and
nucleophile scope (usually S1 and dimethylmalonate as the
nucleophile). See: (a) Evans, D. A.; Campos, K. R.; Tedrow, J. S.;
́
Michael, F. E.; Gagne, M. R. J. Am. Chem. Soc. 2000, 122, 7905 (up to
98%, 90%, and 65% ee at −20 °C for S1, S2, and S3, respectively).
(b) Nakano, H.; Okuyama, Y.; Hongo, H. Tetrahedron Lett. 2000, 41,
allylic substitution of substrates using a large variety of C-, O-,
and N-nucleophiles, including the much less investigated α-
substituted malonates and alkyl alcohols. Furthermore, the
potential application of the new Pd−thioether−phosphite
catalytic systems has been proven by the stereoselective
preparation of carbo- and heterocycles by simple tandem
reactions, involving allylic alkylation/ring-closing metathesis or
allylic alkylation/cycloisomerization of 1,6-enyne reactions,
with no loss in enantiomeric excess. Thus, for the first time,
the capacity of an easily accessible and very modular sugar-
based thioether-phosphite ligand library in the successful
enantioselective Pd-allylic substitution of substrates with a
large variety of nucleophiles has been revealed.
ASSOCIATED CONTENT
* Supporting Information
■
S
4615 (up to 94% ee at −30 °C for S1). (c) García Mancheno, O.;
̃
́ ́
Priego, J.; Cabrera, S.; Gomez Arrayas, R.; Llamas, T.; Carretero, J. C.
Experimental details and characterization data. This material is
J. Org. Chem. 2003, 68, 3679 (up to 97% ee at −20 °C for S1).
(d) Enders, D.; Peters, R.; Runsink, J.; Bats, J. W. Org. Lett. 1999, 1,
́
1863 (up to 97% ee at −20 °C for S1). (e) Guimet, E.; Dieguez, M.;
AUTHOR INFORMATION
Corresponding Authors
■
Ruiz, A.; Claver, C. Tetrahedron: Asymmetry 2005, 16, 959 (up to 93%
ee at 0 °C for S1). (f) Reference 5k (up to 96% ee at rt for S1).
(7) Masdeu-Bulto,
Chem. Rev. 2003, 242, 159.
(8) Coll, M.; Pamies, O.; Dieg
9215.
́
A. M.; Dieg
́
uez, M.; Martin, E.; Gom
́
ez, M. Coord.
Notes
̀
́
uez, M. Chem. Commun. 2011, 47,
(9) The etherification reactions using alkyl alcohols are restricted to
S1-type substrates with a maximum ee of 96%. There is only one
report using cyclic substrate S2 (ref 5h).
(10) (a) Dugal-Tessier, J.; Dake, G. R.; Gates, D. P. Org. Lett. 2010,
12, 4667. (b) Nakai, Y.; Uozumi, Y. Org. Lett. 2005, 7, 291.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to thank the Spanish Government for providing
Grant CTQ2010-15835, the Catalan Government for Grant
2009SGR116, and the ICREA Foundation for providing M.
́ ̀
Dieguez and O. Pamies with financial support through the
ICREA Academia awards.
REFERENCES
■
(1) (a) Asymmetric Catalysis in Industrial Scale: Challenges, Approaches
and Solutions, 2nd ed.; Blaser, H. U., Federsel, H.-J., Eds.; Wiley:
Weinheim, Germany, 2010. (b) Catalytic Asymmetric Synthesis, 3rd ed.;
Ojima, I., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010.
(c) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999.
(2) (a) Dieg
3189. (b) Woodward, S.; Dieg
2010, 254, 2007. (c) Boysen, M. M. K. Chem.Eur. J. 2007, 13, 8648.
(d) Benessere, V.; Del Litto, R.; De Roma, A.; Ruffo, F. Coord. Chem.
Rev. 2010, 254, 390.
́
uez, M.; Pam
̀
ies, O.; Claver, C. Chem. Rev. 2004, 104,
uez, M.; Pamies, O. Coord. Chem. Rev.
́
̀
(3) For recent reviews, see: (a) Helmchen, G.; Pfaltz, A. Acc. Chem.
Res. 2000, 33, 336. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003,
103, 2921. (c) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
(4) (a) Pam
(b) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Claver, C.; Pam
Dieguez, M. Chem. Rev. 2011, 111, 2077.
̀
ies, O.; Dieg
́
uez, M. Acc. Chem. Res. 2010, 43, 312.
̀
ies, O.;
́
(5) Few examples on the Pd-catalyzed etherification of allylic
substrates have been reported. The reason can be found in the low
nucleophilicity of alcohols, which usually results in moderate yields. In
addition, most of the etherification reactions use phenols as
nucleophiles, as the aliphatic ethers are much less studied. For
representative examples using phenols, see: (a) Trost, B. M.; Shen, H.
C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276.
(b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 815.
(c) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545.
(d) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 11262.
(e) Haight, A. R.; Stoner, E. J.; Peterson, M. J.; Grover, V. K. J. Org.
Chem. 2003, 68, 8092. (f) Uozumi, Y.; Kimura, M. Tetrahedron:
Asymmetry 2006, 17, 161. (g) Tietze, L. F.; Lohmann, J. K.; Stadler, C.
1895
dx.doi.org/10.1021/ol500758y | Org. Lett. 2014, 16, 1892−1895