Paper
RSC Advances
9 A. Weber, J. Med. Chem., 2004, 48, 4135–4141.
Sitagliptin 1
10 D. Drucker, Expert Opin. Invest. Drugs, 2003, 12, 87–100.
11 S. A. Miller and E. L. St. Onge, Ann. Pharmacother., 2006, 40,
1336.
12 D. Kim, L. Wang, M. Beconi and G. J. Eiermann, J. Med.
Chem., 2005, 48, 141–151.
13 C. S. Shultz and S. W. Krska, Acc. Chem. Res., 2007, 40, 1320–
1326.
14 L. H. Xia, Chin. J. New Drugs, 2007, 16, 979–981.
15 R. Pathak and M. B. Bridgeman, Pharmacol. Ther., 2010, 35,
509–513.
16 H. Mei, J. Han, K. D. Klika, K. Izawa, T. Sato, N. A. Meanwell
and V. A. Soloshonok, Eur. J. Med. Chem., 2020, 186, 111826.
17 S. Matej, F. Rok and G. Stanislav, ACS Omega, 2020, 5(10),
5356–5364.
18 K. B. Hansen, J. Balsells, S. Dreher, Y. Hsiao, M. Kubryk,
M. Palucki, N. R. Rivera, D. Steinhuebel, J. D. Armstrong
III, D. Askin and E. J. Grabowski, Org. Process Res. Dev.,
2005, 9, 634–639.
19 J. Xu, H. O. Ok and E. J. Gonzalez, Bioorg. Med. Chem. Lett.,
2004, 14, 4759–4762.
20 U. Schollkopf, U. Groth and C. Deng, Angew. Chem., Int. Ed.
Engl., 1981, 20, 798–799.
(S)-4-Oxo-4-(3-(triuoromethyl)-5,6-dihydro-[1,2,4]triazolo[4,3-a]
pyrazin-7(8H)-yl)-1-(2,4,5-triuorophenyl)butan-2-yl methanesul-
fonate 15 (3.0 g, 6.17 mmol) and the prepared solution of NH3 in
MeOH (13 wt% 60 mL) were charged into the ask. The reaction
ꢁ
mixture was heated to 65 C and stirred for 8 h under 145 psi.
MTBE (methyl tert-butyl ether) (50 mL) and 0.5 M H3PO4 (50 mL)
were added aer concentrated. The pH of the mixture was
adjusted to 8–9 with the solution of NaOH. The aqueous layer was
separated, and the organic layer was concentrated and iso-
propanol (40 mL) and water (40 mL) were added. Then 0.5 M
H3PO4 (1 mL) was added dropwise and the mixture was heated to
70 ꢁC and stirred for 2 h. The slurry was ltered aer cooled to the
room temperature. The wet cake was washed with 15 mL iso-
propanol and dried at 40 ꢁC in a vacuum oven to obtain sita-
gliptin 1 (1.2 g, 99 wt%) in 33% yield and 7% ee. ESI-MS (m/z):
1
(408, M+ + H); H NMR (400 MHz, CDCl3) d 7.00–7.25 (m, 5H),
4.61–4.91 (m, 2H), 4.31–4.36 (m, 1H), 3.84–3.99 (s, 2H), 2.78–3.82
(m, 2H), 2.66–2.72 (m, 1H), 2.59–2.64 (m, 1H), 2.51 (s, 2H); 13C
NMR (D2O) d: 30.9, 33.7, 38.0, 41.8, 43.1, 48.2, 105.8, 115.4, 118.5,
120.9, 145.5, 148.7, 157.2, 170.2.
Conflicts of interest
21 D. Kim, L. Wang, M. Beconi, G. J. Eiermann and
M. H. Fisher, J. Med. Chem., 2005, 48, 141–151.
22 K. B. Hansen, H. Yi, F. Xu, N. Rivera, A. Clausen and
M. Kubryk, J. Am. Chem. Soc., 2009, 131, 8798–8804.
23 F. Xu, J. D. Armstrong, G. X. Zhou and B. Simmons, J. Am.
Chem. Soc., 2004, 126, 13002–13009.
The authors declare that there are no conicts of interest
regarding the publication of this article.
Acknowledgements
24 Y. Hsiao, N. R. Rivera, T. Rosner and S. W. Krska, J. Am.
Chem. Soc., 2004, 126, 9918–9919.
25 A. M. Clausen, B. Dziadul, K. L. Cappuccio and M. Kaba, Org.
Process Res. Dev., 2006, 10, 723–726.
26 C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam,
W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz and
J. Brands, Science, 2010, 329, 305–309.
27 Y. Wei, S. Xia and C. He, Biotechnol. Lett., 2016, 38, 841–846.
28 L. L. Zeng, Y. J. Ding, G. C. Zhang, H. R. Song and W. H. Hu,
Chin. Chem. Lett., 2009, 20, 1397.
This work was partially supported by the Natural Science
Foundation for Ningxia Province (Grants no. 2018AAC03235),
Liupanshan Resources Engineering Technology Central (Grants
no. HGZD19-10), the Research Award Fund for First-class
Discipline Construction (Education Discipline) in Higher
Education
Institutions
of
Ningxia
(Grants
no.
NXYLXK2017B11), Development of Science and Technology of
Ningxia (Grants no. 2019BEB04019).
References
˜
29 S. Zhou, J. Wang, X. Chen, J. L. Acena, V. A. Soloshonok and
H. Liu, Angew. Chem., Int. Ed., 2014, 53, 7883–7886.
30 K. Lin, Z. Cai and W. Zhou, Synth. Commun., 2013, 43, 3281.
31 O. Gutierrz, D. Metil and N. Dwivedi, Org. Lett., 2015, 17,
1742–1745.
1 For leading references, see: N. A. Thornberry and
A. E. Weber, Curr. Top. Med. Chem., 2007, 7, 557–568.
2 S. L. Gwaltney II and J. A. Stafford, Annu. Rep. Med. Chem.,
2005, 40, 149–165.
32 A. J. Blacker, Process for the Preparation of aromatic Amines,
WO2004110976, 2004, 09, 06.
3 B. Ahren, M. Landin-Olsson, P. A. Jansson, M. Svenson,
D. Holmes and A. Schweizer, J. Clin. Endocrinol. Metab.,
2004, 89, 2078–2084.
4 International Diabetes Federation (IDF), Diabetes Atlas, 2019,
6 E. Adeghate, H. Kalasz, G. Veress and K. Tekes, Curr. Med.
Chem., 2010, 17, 517–551.
7 E. Adeghate, E. Feher and H. Kalasz, Expert Opin. Invest.
Drugs, 2015, 24, 1–15.
33 D. Spencer, I. Norihiro and N. Eugenia, Process to Chiral
Beta-amino acid Derivatives, WO2004085661, 2004, 03, 19.
34 Y. Xiao, D. Joseph and W. Shane, Process for the Preparation of
Chiral Beta amino Acid Derivatives by Asymmetric
Hydrogenation, WO2004085378, 2004, 03, 15.
35 B. H. Lipshutz, K. Noson and W. Chrisman, J. Am. Chem.
Soc., 2001, 123, 12917–12918.
36 H. Shimizu, I. Nagasaki and K. Matsumura, Acc. Chem. Res.,
2007, 40, 1385–1393.
8 F. Peng, Y. Chen and C. Chen, J. Org. Chem., 2017, 82(17),
9023–9029.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 4805–4809 | 4809