5200
S. Price et al. / Tetrahedron Letters 45 (2004) 5197–5201
4. (a) Moineau, C.; Bolitt, V.; Sinou, D. J. Org. Chem. 1998,
OAc
OAc
1. cat. OsO4, NMO
8:1 acetone/H2O
63, 582–597; (b) Brakta, M.; Lhoste, P.; Sinou, D. J. Org.
Chem. 1989, 54, 1890–1896.
Ph
Ph
O
O
5. (a) Dunkerton, L. V.; Serino, A. J. J. Org. Chem. 1982, 47,
2812–2815; (b) Dunkerton, L. V.; Euske, J. M.; Serino, A.
J. Carbohydr. Res. 1987, 171, 89–91.
2. Ac2O, Py, DMAP
OAc
AcO
AcO
OAc
3a
6. Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem.
Soc. 2001, 123, 4155–4160.
14
Scheme 4. Preparation of C-aryl glycoside 14 via dihydroxylation.
7. Perez, I.; Sestelo, J. P.; Sarandeses, L. A. Org. Lett. 1999,
1, 1267–1269.
osmylation to a-C-phenyl-D2;3–glycoside 3a, followed by
acylation (Ac2O, pyridine, cat. DMAP) gives exclusively
a-phenyl-mannoside 1422 in 85% overall yield, in which
the hydroxyl groups have been introduced from the face
of the carbohydrate opposite the aromatic moiety
(Scheme 4). Although numerous C-glycosyl flavonoids
that have been isolated possess a b-C-glycosidic link-
age,23 there are notable and important exceptions.24
Since only a few procedures currently exist that provide
access to a-C-aryl glycosides,25 this mild, stereoselective
sequence should prove of great utility in the synthesis of
this class of compounds.
8. Steinhuebel, D. P.; Fleming, J. F.; DuBois, J. Org. Lett.
2002, 4, 293–295.
9. For the initial report, see: Nomura, R.; Miyazaki, S.-I.;
Matsuda, H. J. Am. Chem. Soc. 1992, 114, 2738–2741.
10. Interestingly, whereas reactions carried out in CH2Cl2
were completely homogenous, reactions performed in
ether or toluene had visible white precipitates that did
not dissolve throughout the course of the reaction.
11. For C-glycosides 5 derived from di-O-acetyl-L-rhamnal 4,
the ‘a-configuration’ corresponds to a trans relationship
between the substituents at C10 and C50 (Table 2).
12. (a) Stewart, A. O.; Williams, R. M. J. Am. Chem. Soc.
1985, 107, 4289–4296; (b) Minehan, T. G.; Kishi, Y.
Tetrahedron Lett. 1997, 38, 6815–6818; (c) Nicotra, F.
Topics Curr. Chem. 1997, 187, 55–83.
13. In ether, a ‘cation-solvating’ solvent, only electron-rich
arylindiums can effectively compete with the solvent for
addition to both sides of the oxonium ion; in the less polar
CH2Cl2, a tight ion pair (with AcOꢁ or Clꢁ) prevents the
addition of nucleophiles to the less-hindered b-face of the
oxonium ion. See Ref. 12a for a discussion of solvent
effects on the stereochemistry of glycosidation.
In summary, triorganoindiums are mild, atom-efficient
and environmentally friendly reagents that can be em-
ployed in the preparation of a diverse array of 2,3-
unsaturated C-glycosides.
Supplementary material
14. Ferrier, R. J. Topics Curr. Chem. 2001, 215, 153–175.
15. The gauche effect predicts that C10 and C50 of a-glycopyr-
anoside anomers will be shielded with respect to the
corresponding carbons of the b-anomers: (a) Brakta, M.;
Farr, R. N.; Chaguir, B.; Massiot, G.; Lavaud, C.;
Anderson, W. R.; Sinou, D.; Daves, G. D. J. Org. Chem.
1993, 58, 2992–2998; (b) Stothers, J. B. Carbon-13 NMR
Spectroscopy; Academic: New York, 1973; Chapter 3; (c)
Kalinowski, H. O.; Berger, S.; Braun, S. Carbon-13 NMR
Spectroscopy; Academic: New York, 1988; Chapter 3.
16. Wittman, M. D.; Halcomb, R. L.; Danishefsky, S. J.;
Golik, J.; Vyas, D. J. Org. Chem. 1990, 55, 1979–1981.
17. (a) Lee, P. H.; Lee, S. W.; Saemoon, D. Org. Lett. 2003, 5,
4963–4966; (b) Araki, S.; Shimizu, T.; Jin, S.-J.; Butsugan,
Y. Chem. Commun. 1991, 824–825.
Complete experimental details and spectroscopic data
for all compounds prepared in Table 2 and Schemes 4
and 6.
Acknowledgements
We are grateful for the generous financial support of this
work by the National Science Foundation (under Grant
No. 0097262) and the ACS Petroleum Research Fund
(PRF # 38271-GB1).
18. The weakness of the indium-carbon bond (ꢀ40 kcal/mol)
has been cited as a possible reason for the atom efficiency
of indium reagents in transferring their organic ligands
(replacing them preferentially with more electronegative
substitutents, such as halides); see Refs. 9 and 6.
References and notes
19. (a) Yadav, J. S.; Reddy, B. V. S.; Raju, A. K.; Rao, C. V.
Tetrahedron Lett. 2002, 43, 5437–5440; (b) Saeeng, R.;
Sirion, U.; Sahakitpichan, P.; Isobe, M. Tetrahedron Lett.
2003, 44, 6211–6215; (c) Yadav, J. S.; Reddy, B. V. S.;
Rao, C. V.; Reddy, M. Synthesis 2003, 2, 247–250.
20. For previous literature on C-aryl glycoside synthesis, see:
(a) Jaramillo, C.; Knapp, S. Synthesis 1993, 1–20; (b) Du,
Y.; Linhardt, R. J. Tetrahedron 1998, 54, 9913–9959; (c)
Postema, M. H. D. C-Glycoside Synthesis; CRC: Boca
Raton, 1995; (d) Levy, D. E.; Tang, C. The Chemistry of
C-Glycosides; Pergamon: Oxford, 1995.
1. (a) Baycroft, B. W. Dictionary of Antibiotics and Related
Substances; Chapman and Hall: London, 1988; (b) Faul,
M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407–2473; (c)
Faulknew, D. J. Nat. Prod. Rep. 2000, 17, 7–55; (d)
Hacksell, U.; Davies, G. D., Jr. Prog. Med. Chem. 1985,
22, 1–65; (e) Franz, G.; Grun, M. Planta Med. 1983, 47,
131–140; (f) Suzuki, K.; Matsumoto, T. In Recent
Progress in the Chemical Synthesis of Antibiotics and
Related Microbial Products; Lukacs, G., Ed.; Springer:
Berlin, 1993; Vol. 2, pp 352–403.
2. Ramnauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. P.
Org. Lett. 2001, 3, 2013–2015.
3. (a) Kwok, D.-I.; Farr, R. N.; Daves, G. D. J. Org. Chem.
1991, 56, 3711–3716; (b) Czernecki, S.; Dechavanne, V.
Can. J. Chem. 1983, 61, 533–538; (c) Daves, G. D. Acc.
Chem. Res. 1990, 23, 201–220.
21. (a) Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron
Lett. 1976, 1973–1976; (b) Van Rheenen, V.; Cha, D. Y.;
Hartley, W. M. Org Synth. Coll. 1988, 6, 342–347.
22. (a) Cettour, P.; Descotes, G.; Praly, J.-P. J. Carbohydr.
Chem. 1995, 14, 445; (b) El Bahij, S.; Abbes, O.; Neuman,
A.; Gillier-Pandraud, H. Carbohydr. Res. 1993, 244, 197–