Journal of the American Chemical Society
COMMUNICATION
transfer hydrogenation of quinoxalines promoted by chiral phospho-
ric acids because of the different steric demands for the 1,2- and
1,4-hydride transfer pathways. Asymmetric transfer reduction of
benzoxazines was also realized using catalytic amounts of quinoxalines
under hydrogenation conditions.14 Further study will be directed
toward the extension of this strategy to other synthetically interesting
compounds.
(d) Tanaka, T.; Hayashi, M. Synthesis 2008, 3361. (e) Bartꢀok, M. Chem.
Rev. 2010, 110, 1663.
(7) For recent reviews of asymmetric hydrogenation of aromatic
compounds, see: (a) Glorius, F. Org. Biomol. Chem. 2005, 3, 4171. (b)
Lu, S. M.; Han, X. W.; Zhou, Y. G. Chin. J. Org. Chem. 2005, 25, 634. (c)
Zhou, Y. G. Acc. Chem. Res. 2007, 40, 1357. (d) Kuwano, R. Heterocycles
2008, 76, 909.
(8) For asymmetric reduction of quinoxalines, see: (a) Murata, S.;
Sugimoto, T.; Matsuura, S. Heterocycles 1987, 26, 763. (b) Bianchini, C.;
Barbaro, P.; Scapacci, G.; Farnetti, E.; Graziani, M. Organometallics
1998, 17, 3308. (c) Brunner, H.; Rosenboem, S. Monatsh. Chem. 2000,
131, 1371. (d) Cobley, C. J.; Henschke, J. P. Adv. Synth. Catal. 2003,
345, 195. (e) Henschke, J. P.; Burk, M. J.; Malan, C. G.; Herzberg, D.;
Peterson, J. A.; Wildsmith, A. J.; Cobley, C. J.; Casy, G. Adv. Synth. Catal.
2003, 345, 300. (f) Mrꢁsiꢀc, N.; Jerphagnon, T.; Minnaard, A. J.; Feringa,
B. L.; de Vries, J. G. Adv. Synth. Catal. 2009, 351, 2549. (g) Tang, W. J.;
Xu, L. J.; Fan, Q. H.; Wang, J.; Fan, B. M.; Zhou, Z. Y.; Lam, K. H.; Chan,
A. S. C. Angew. Chem., Int. Ed. 2009, 48, 9135. (h) Cartigny, D.; Nagano,
T.; Ayad, T.; Genet, J. P.; Ohshima, T.; Mashima, K.; Ratovelomanana-
Vidal, V. Adv. Synth. Catal. 2010, 352, 1886. (i) Rueping, M.; Tato, F.;
Schoepke, F. R. Chem.—Eur. J. 2010, 16, 2688. (j) Wang, D.-W.; Wang,
D.-S.; Chen, Q.-A.; Zhou, Y.-G. Chem.—Eur. J. 2010, 16, 1133.
(9) For asymmetric reduction of other heteroaromatic compounds,
see: Quinolines: (a) Wang, W. B.; Lu, S. M.; Yang, P. Y.; Han, X. W.;
Zhou, Y. G. J. Am. Chem. Soc. 2003, 125, 10536. (b) Lu, S. M.; Wang,
Y. Q.; Han, X. W.; Zhou, Y. G. Angew. Chem., Int. Ed. 2006, 45, 2260. (c)
Rueping, M.; Antonchick, A. R.; Theissmann, T. Angew. Chem., Int. Ed.
2006, 45, 3683. (d) Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem., Int. Ed.
2008, 47, 759. (e) Zhou, H. F.; Li, Z. W.; Wang, Z. J.; Wang, T. L.; Xu,
L. J.; He, Y.; Fan, Q. H.; Pan, J.; Gu, L. Q.; Chan, A. S. C. Angew. Chem.,
Int. Ed. 2008, 47, 8464. (f) Wang, C.; Li, C. Q.; Wu, X. F.; Pettman, A.;
Xiao, J. L. Angew. Chem., Int. Ed. 2009, 48, 6524. (g) Wang, D. W.; Wang,
X. B.; Wang, D. S.; Lu, S. M.; Zhou, Y. G.; Li, Y. X. J. Org. Chem. 2009,
74, 2780. (h) Rueping, M.; Theissmann, T. Chem. Sci. 2010, 1, 473.
Pyridines:(i) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.;
Lehmann, C. W. Angew. Chem., Int. Ed. 2004, 43, 2850. (j) Legault,
C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966. (k) Rueping, M.;
Antonchick, A. P. Angew. Chem., Int. Ed. 2007, 46, 4562. (l) Wang, X. B.;
Zeng, W.; Zhou, Y. G. Tetrahedron Lett. 2008, 49, 4922. Indoles:(m)
Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc.
2000, 122, 7614. (n) Wang, D. S.; Chen, Q. A.; Li, W.; Yu, C. B.; Zhou,
Y. G.; Zhang, X. M. J. Am. Chem. Soc. 2010, 132, 8909. Pyrroles:(o)
Kuwano, R.; Kashiwabara, M.; Ohsumi, M.; Kusano, H. J. Am. Chem. Soc.
2008, 130, 808. Furans:(p) Kaiser, S.; Smidt, S. R.; Pfaltz, A. Angew.
Chem., Int. Ed. 2006, 45, 5194.
(10) (a) Li, C.; Wang, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc.
2008, 130, 14450. (b) Li, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc.
2009, 131, 6967. (c) Villa-Marcos, B.; Li, C.; Mulholland, K. R.; Hogan,
P. J.; Xiao, J. Molecules 2010, 15, 2453. (d) Rueping, M.; Koenigs, R. M.
Chem. Commun. 2011, 47, 304.
(11) (a) Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem.
Res. 2007, 40, 1327. (b) You, S. L. Chem.—Asian J. 2007, 2, 820.
(c) Connon, S. J. Org. Biomol. Chem. 2007, 5, 3407 and references cited
therein.
(12) Low conversion (30%) and almost 0% ee were obtained when
3-phenyl-2H-1,4-benzoxazine replaced 4b as the starting material in eq 10 in
Scheme 4. When compounds 4a and 4b (1:1) were reacted in the same
reaction vessel in benzene, the ee of 3a was 93% and compound 5 was
obtained in 94% ee as a result of the hydride transfer from 4a to 4b in the
presence of chiral phosphoric acid (S)-1b. Amixtureof5and 3a (1.00:0.64)
suggested that the formation of 3a was not faster than that of 5.
(13) (a) Simoꢀn, L.; Goodman, J. M. J. Am. Chem. Soc. 2008,
130, 8741. (b) Marcelli, T.; Hammar, P.; Himo, F. Chem.—Eur. J.
2008, 14, 8562.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental pro-
b
cedures and characterization data for the prepared compounds.
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
ygzhou@dicp.ac.cn; fanhj@dicp.ac.cn
’ ACKNOWLEDGMENT
This work was supported by the National Natural Science
Foundation of China (21032003 and 20921092), the National
Basic Research Program of China (2010CB833300), and the
Dalian Institute of Chemical Physics (K2010F1).
’ REFERENCES
(1) (a) Donohoe, T. J. Oxidation and Reduction in Organic Synthesis;
Oxford University Press: New York, 2000. (b) B€ackvall, J. E. Modern
Oxidation Methods; Wiley-VCH: Weinheim, Germany, 2004. (c)
Andersson, P. G.; Munslow, I. J. Modern Reduction Methods; Wiley-VCH:
Weinheim, Germany, 2008.
(2) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, Germany, 2007.
(3) For recent reviews of chiral phosphoric acids, see: (a) Akiyama,
T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (b) Akiyama,
T. Chem. Rev. 2007, 107, 5744. (c) Terada, M. Chem. Commun.
2008, 4097. (d) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem.
2010, 291, 395. (e) Terada, M. Synthesis 2010, 1929. (f) Terada, M. Bull.
Chem. Soc. Jpn. 2010, 83, 101. (g) Rueping, M.; Sugiono, E.; Schoepke,
F. R. Synlett 2010, 852 and references cited therein.
(4) For recent reviews of catalysts formed by combination of metals
and chiral phosphoric acids, see: (a) Shao, Z. H.; Zhang, H. B. Chem. Soc.
Rev. 2009, 38, 2745. (b) Rueping, M.; Koenigs, R.; Atodiresei, I. Chem.
—Eur. J. 2010, 16, 9350. (c) Zhou, J. Chem.—Asian J. 2010, 5, 422. (d)
Zhong, C.; Shi, X. D. Eur. J. Org. Chem. 2010, 2999.
(5) For asymmetric reactions catalyzed by metal/Brønsted acid relay
catalysis systems, see: (a) Komanduri, V.; Krische, M. J. J. Am. Chem. Soc.
2006, 128, 16448. (b) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007,
129, 11336. (c) Hu, W. H.; Xu, X. F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu,
J.; Yang, L. P.; Gong, L. Z. J. Am. Chem. Soc. 2008, 130, 7782. (d) Xu, X. F.;
Zhou, J.; Yang, L. P.; Hu, W. H. Chem. Commun. 2008, 6564. (e) Yang, L.;
Zhu, Q. M.; Guo, S. M.; Qian, B.; Xia, C. G.; Huang, H. M. Chem.—Eur. J.
2010, 16, 1638. (f) Han, Z. Y.; Xiao, H.; Chen, X. H.; Gong, L. Z. J. Am.
Chem. Soc. 2009, 131, 9182. (g) Liu, X. Y.; Che, C. M. Org. Lett. 2009,
11, 4204. (h) Terada, M.; Toda, Y. J. Am. Chem. Soc. 2009, 131, 6354. (i)
Wang, C.; Han, Z. Y.; Luo, H. W.; Gong, L. Z. Org. Lett. 2010, 12, 2266. (j)
Cai, Q.; Zhao, Z.-A.; You, S.-L. Angew. Chem., Int. Ed. 2009, 48, 7428. (k)
Cai, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2010, 49, 8666.
(6) For recent reviews of reversal of enantioselectivity in asymmetric
reactions, see: (a) Kim, Y. H. Acc. Chem. Res. 2001, 34, 955. (b) Sibi,
M. P.; Liu, M. Curr. Org. Chem. 2001, 5, 719. (c) Zanoni, G.; Castronovo,
F.; Franzini, M.; Vidari, G.; Giannini, E. Chem. Soc. Rev. 2003, 32, 115.
(14) (a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew.
Chem., Int. Ed. 2006, 45, 6751. (b) Rueping, M.; Sugiono, E.; Steck, A.;
Theissmann, T. Adv. Synth. Catal. 2010, 352, 281.
6129
dx.doi.org/10.1021/ja200723n |J. Am. Chem. Soc. 2011, 133, 6126–6129