pubs.acs.org/joc
imparting properties. As a matter of fact, extensive studies
Diastereoselective Silver-Catalyzed 1,3-Dipolar
Cycloaddition of Azomethine Ylides with
Fluorinated Imine
have been carried out in seeking new synthetic fluorination
methodologies during the last 30 years.2
The catalytic asymmetric 1,3-dipolar cycloaddition of
azomethine ylides to electron-deficient alkenes has become
one of the most convenient and diversity-oriented syntheses
for the construction of highly substituted pyrrolidines with
up to four stereogenic centers.3 Although various methods
have been developed for this transformation, most of the
electron-deficient alkenes applied in the 1,3-dipolar cycload-
ditions of azomethine ylides are limited to maleates, fuma-
rates, maleimides, acrylates, nitroalkenes, and vinyl phenyl
sulfones in the synthesis of multisubstituted pyrrolidines. On
the contrary, Mannich reaction of azomethine ylides with
imine was documented,4 while 1,3-dipolar cycloaddition of
azomethine ylides to imine is rarely reported.5
Haibo Xie,† Jiangtao Zhu,† Zixian Chen,†,‡ Shan Li,† and
Yongming Wu*,†
†Key Laboratory of Organofluorine Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of
Sciences, 345 Lingling Road, Shanghai 200032, China, and
‡Department of Chemistry, Huazhong University of Science
and Technology, Wuhan, Hubei 430074, China
Received August 9, 2010
Herein, we wish to report the synthesis of fluorinated
tetrahydroimidazole by 1,3-dipolar cycloaddition of azo-
methine ylides with fluorinated imine catalyzed by silver(I)
acetate. To begin our study, we selected azomethine ylides
and N-aryl bromodifluoroethylimine, which was obtained
by condensation of bromodifluoroacetaldehyde ethyl hemi-
acetal with arylamine, as the model reaction to optimize the
reaction conditions. We found that AgOAc, AgOTf, Ag2SO4,
AgNO3, and Ag2CO3 catalyzed the 1,3-dipolar cycloaddition
reaction (12 h, rt) affording the desired fluorinated tetrahy-
droimidazole in 70%, 60%, 64%, 20%, and 72% yield,
respectively (Table 1, entries 1-5), in toluene. Then using
We described hereby an instance of diastereoselective
silver-catalyzed 1,3-dipolar cycloaddition of azomethine
ylides with imine compounds. This new method provided
synthetically useful, highly substituted tetrahydroimida-
zole derivatives with efficiency and high diastereoselec-
tivity. We can conveniently obtain fluorinated dihydro-
imidazole, imidazole, and diamino esters through simple
modification.
(3) (a) Wang, C. J.; Xue, Z. Y.; Liang, G.; Lu, Z. Chem. Commun. 2009,
2905. (b) Xue, Z. Y.; Liu, T. L.; Lu, Z.; Huang, H.; Tao, H. Y.; Wang, C. J.
Chem. Commun. 2010, 46, 1727. (c) Casas, J.; Grigg, R.; Najera, C.; Sansano,
J. M. Eur. J. Org. Chem. 2001, 1971. (d) Cabrera, S.; Arrayas, R. G.;
Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394. (e) Ruano, J. L. G.;
Tito, A.; Peromingo, M. T. J. Org. Chem. 2002, 67, 981. (f) Ruano, J. L. G.;
Tito, A.; Peromingo, M. T. J. Org. Chem. 2003, 68, 10013. (g) Shi, J. W.;
Zhao, M. X.; Lei, Z. Y.; Shi, M. J. Org. Chem. 2008, 73, 305. (h) Chen, C.; Li,
X. D.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. (i) Chen, X. H.;
Zhang, W. Q.; Gong, L. Z. J. Am. Chem. Soc. 2008, 130, 5652. (j) Longmire,
J. M.; Wang, B.; Zhang, X. M. J. Am. Chem. Soc. 2002, 124, 13400. (k)
Lopez-Perez, A.; Adrio, J.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130,
10084. (l) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129,
5364. (m) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S.
J. Am. Chem. Soc. 2008, 130, 13321. (n) Wang, C. J.; Liang, G.; Xue, Z. Y.;
Gao, F. J. Am. Chem. Soc. 2008, 130, 17250. (o) Yan, X. X.; Peng, Q.; Li, Q.;
Zhang, K.; Yao, J.; Hou, X. L.; Wu, Y. D. J. Am. Chem. Soc. 2008, 130,
14362. (p) Zeng, W.; Chen, G. Y.; Zhou, Y. G.; Li, Y. X. J. Am. Chem. Soc.
2007, 129, 750. (q) Alemparte, C.; Blay, G.; Jorgensen, K. A. Org. Lett. 2005,
7, 4569. (r) Dogan, O.; Koyuncu, H.; Garner, P.; Bulut, A.; Youngs, W. J.;
Panzner, M. Org. Lett. 2006, 8, 4687. (s) Fukuzawa, S. I.; Oki, H. Org. Lett.
2008, 10, 1747. (t) Llamas, T.; Arrayas, R. G.; Carretero, J. C. Org. Lett.
2006, 8, 1795. (u) Nareja, C.; de Gracia Retamosa, M.; Sansano, J. M. Org.
Lett. 2007, 9, 4025. (v) Oderaotoshi, Y.; Cheng, W. J.; Fujitomi, S.; Kasano,
Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5, 5043. (w) Zeng, W.; Zhou,
Y. G. Org. Lett. 2005, 7, 5055. (x) Zeng, W.; Zhou, Y. G. Tetrahedron Lett.
2007, 48, 4619.
The performance of organofluorine compounds in all
aspects of the chemical industry such as materials, pharma-
ceuticals, agrochemicals, and fine chemicals is phenomenal.
Organofluorine compounds are rare in natural products, but
20-25% of drugs in the pharmaceutical pipeline contain at
least one fluorine atom.1 As the incorporation of fluorine
and/or fluorine-containing groups into an organic molecule
often drastically alters the chemical, physical, and biological
properties of the parent compound, it is only logical to
conclude that the above modification necessitates the inven-
tion of novel reagents and materials endowed with fluorine
(1) (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320. (b) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
(2) (a) Banks, R. E.; Smart, B. E.; Tatlow, J. C., Eds. Organofluorine
Chemistry: Principles and Commercial Applications; Plenum: New York,
1994. (b) Hudlicky, M.; Pavlath, A. E., Eds. Chemistry of Organic Fluorine
Compounds II: A Critical Review; American Chemical Society: Washington,
DC, 1995. (c) Hiyama, T., Ed. Organofluorine Compounds, Chemistry and
Application; Springer: New York, 2000. (d) Chambers, R. D. Fluorine in
Organic Chemistry; Blackwell: Oxford, UK, 2004. (e) Kirsch, P. Modern
Fluoroorganic Chemisty;Wiley-VCH: Weinheim, Germany, 2004; Mono-
graph 187. (f) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford,
UK, 2006.
(4) (a) Arrayas, R. G.; Carretero, J. C. Chem. Soc. Rev. 2009, 38, 1940. (b)
Viso, A.; de la Pradilla, R. F.; Garcia, A.; Guerrero-Strachan, C.; Alonso, A.;
Tortosa, M.; Flores, A.; Martinez-Ripoll, M.; Fonseca, I.; Andre, I.;
Rodriguez, A. Chem.;Eur. J. 2003, 9, 2867. (c) Kiss, L.; Mangelinckx, S.;
Sillanpaa, R.; Fulop, F.; De Kimpe, N. J. Org. Chem. 2007, 72, 7199. (d)
Hernandez-Toribio, J.; Arrayas, R. G.; Carretero, J. C. J. Am. Chem. Soc.
2008, 130, 16150.
(5) (a) Amornraksa, K.; Barr, D.; Donegan, G.; Grigg, R.; Ratananukul,
P.; Sridharan, V. Tetrahedron 1989, 45, 4649. (b) Groundwater, P. W.; Sharif,
T.; Arany, A.; Hibbs, D. E.; Hursthouse, M. B.; Garnett, I.; Nyerges, M.
J. Chem. Soc., Perkin. Trans. 1 1998, 2837. (c) Erkizia, E.; Aldaba, E.; Vara,
Y.; Arrieta, A.; Gornitzka, H.; Cossio, F. P. Arkivoc 2005, 9, 189.
7468 J. Org. Chem. 2010, 75, 7468–7471
Published on Web 10/11/2010
DOI: 10.1021/jo101447n
r
2010 American Chemical Society