pubs.acs.org/joc
many others.5 Despite the great importance of 2-alkoxy-
Synthesis of 2-Alkoxy(aroxy)-3-substituted
Quinolines by DABCO-Promoted Cyclization
of o-Alkynylaryl Isocyanides
(aroxy)quinolines in medicinal chemistry, efficient ap-
proaches to their preparation are limited. One of the most
widely used methods is probably nucleophilic substitution of
2-haloquinoline derivatives with corresponding alcohols or
phenols in the presence of bases, such as K2CO3, tBuOK, or
NaH, under heating (path a, Scheme 1).6,1b,2,3 This process
can also be promoted in the presence of copper catalysts.7
The major drawback of this method is the nucleophilicity
requirement of alcohols and phenols used. For less nucleo-
philic alcohols and phenols, the yields are extremely low.1b,7b
The use of strong bases under elevated temperatures also
limits its application. Another common approach to 2-alko-
xyquinolines is alkylation of 2-quinolones (path b, Scheme 1).
Unfortunately, the selectivity between O- and N-alkylation is
always a problem. As a fact, the unwanted N-alkylation
product usually predominates.8 Copper-catalyzed coupling
of 2-quinolones with aryl halides provides the C-N bond
forming product exclusively.9 Thus, an efficient synthesis of
diversified 2-alkoxy and 2-aroxyquinolines, especially ap-
plicable to sterically demanding and/or electron-deficient
alcohols and phenols, is highly desirable.10 We report herein
a novel metal- and strong base-free synthesis of 2-alkoxy-
(aroxy)-3-aryl(alkyl)quinolines from readily accessible o-al-
kynylaryl isocyanides and various alcohols and phenols
including less nucleophilic ones in the presence of 1,4-
diazabicyclo[2.2.2]octane (DABCO) under mild conditions
(path c, Scheme 1).
In 1999,11 Ito et al reported a new access to 2,3-disubsti-
tuted quinolines through cyclization of o-alkynylaryl isocy-
anides with MeOH, Et2NH, and other carbanions as nucleo-
philes. We also developed an efficient synthesis of diversified
2-chloro-3-substituted quinolines from o-alkynylaryl isocya-
nides and tetrabutylammonium chloride under mild condi-
tions.12 We hypothesized that extension of Ito’s strategy to
other less nucleophilic oxygenated nucleophiles, such as
phenols and secondary alcohols, would lead to a general
approach to 2-alkoxy(aroxy)-3-aryl(alkyl)quinolines.
Having this idea in mind, we initiated the study with
o-(phenylethynyl)phenyl isocyanide 2a and phenol 3a as
substrates under various conditions as summarized in Table 1.
Jiaji Zhao, Changlan Peng, Lanying Liu, Yong Wang, and
Qiang Zhu*
State Key Laboratory of Respiratory Disease,
Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, 190 Kaiyuan Avenue,
Guangzhou 510530, China
Received September 6, 2010
Diversified 2-alkoxy- and 2-aroxy-3-substituted quino-
lines were synthesized from o-alkynylaryl isocyanides and
alcohols and phenols promoted by DABCO, respectively.
The reaction was initiated by nucleophilic addition of
DABCO to isocyanide and subsequent cycliztion, leading
to a DABCO-quinoline-based adduct as the reactive
intermediate, followed by substitution of the DABCO
moiety with oxygenated nucleophiles.
2-Alkoxy(aroxy)quinolines exist as substructures in many
medicinally interesting compounds exhibiting a wide spec-
trum of biological activities, such as antimycobacterial
tuberculosis,1 antitumor,2 antimalarial,3 antithrombin,4 and
(1) (a) Saga, Y.; Motoki, R.; Makino, S.; Shimizu, Y.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1234. (b) Upadhayaya, R. S.;
Kulkarni, G. M.; Vasireddy, N. R.; Vandavasi, J. K.; Dixit, S. S.; Sharma, V.;
Chattopadhyaya, J. Bioorg. Med. Chem. 2009, 17, 4681.
(2) (a) Hazeldine, S.; Polin, L.; Kushner, J.; White, K.; Bouregeois, N. H.;
Crantz, B.; Palomino, E.; Corbett, T. H.; Horwitz, J. P. J. Med. Chem. 2002,
45, 3130. (b) Hazeldine, S. T.; Polin, L.; Kushner, J.; White, K.; Corbett,
T. H.; Horwitz, J. P. Bioorg. Med. Chem. 2006, 14, 2462.
(6) (a) Cherng, Y.-J. Tetrahedron 2002, 58, 1125. (b) Lanni, E. L.;
Bosscher, M. A.; Ooms, B. D.; Shandro, C. A.; Ellsworth, B. A.; Anderson,
C. E. J. Org. Chem. 2008, 73, 6425. (c) Cottam, J. R. A.; Steel, P. J.
Tetrahedron 2009, 65, 7948.
(7) (a) Zhang, Q.; Wang, D.; Wang, X.; Ding, K. J. Org. Chem. 2009, 74,
7187. (b) Cavalluzzi, M. M. C.; Bruno, C.; Lentini, G.; Lovece, A.; Catalano,
A.; Carocci, A.; Franchini, C. Tetrahedron: Asymmetry 2009, 20, 1984.
(3) LaMontagne, M. P.; Blumbergs, P.; Smith, D. C. J. Med. Chem. 1989,
32, 1728.
ꢀ
(4) (a) Ries, U. J.; Priepke, H. W. M.; Hauel, N. H.; Haaksma, E. E. J.;
Stassen, J. M.; Wienen, W.; Nar, H. Bioorg. Med. Chem. Lett. 2003, 13, 2291.
(b) Ries, U. J.; Priepke, H. W. M.; Hauel, N. H.; Handschuh, S.; Mihm, G.;
Stassen, J. M.; Wienen, W.; Nar, H. Bioorg. Med. Chem. Lett. 2003, 13, 2297.
(5) (a) Liu, Y.; Feng, Y.; Wang, R.; Gao, Y.; Lai, L. Bioorg, Med. Chem.
Lett. 2001, 11, 1639. (b) Batt, D. G.; Petraitis, J. J.; Sherk, S. R.; Copeland,
R. A.; Dowling, R. L.; Taylor, T. L.; Jones, E. A.; Magolda, R. L.; Jaffee,
(8) (a) Joseph, B.; Darro, F.; Behard, A.; Lesur, B.; Collignon, F.;
Decaestecker, C.; Frydman, A.; Guillaumet, G.; Kiss, R. J. Med. Chem.
2002, 45, 2543. (b) Park, K. K.; Lee, J. J. Tetrahedron 2004, 60, 2993.
(9) (a) Filipski, K. J.; Kohrt, J. T.; Casimiro-Garcia, A.; Van Huis, C. A.;
Dudley, D. A.; Cody, W. L.; Bigge, C. F.; Desiraju, S.; Sun, S.; Maiti, S. N.;
Jaber, M. R.; Edmunds, J. J. Tetrahedron Lett. 2006, 47, 7677. (b) Sugahara,
M.; Ukita, T. Chem. Pharm. Bull. 1997, 45, 719. (c) Wawzonek, S.; Truong,
T. V. J. Heterocycl. Chem. 1988, 25, 381.
(10) For examples of other uncommon methods, see: (a) Han, E.-G.
Kim, H. J.; Lee, K.-J. Tetrahedron 2009, 65, 9616. (b) Dimsdale, M. J.
J. Heterocycl. Chem. 1979, 16, 1209.
ꢀ
B. D. Bioorg. Med. Chem. Lett. 1998, 8, 1745. (c) Caijo, F.; Mosset, P.; Gree,
R.; Audinot-Bouchez, V.; Boutin, J.; Renard, P.; Caignard, D.-H.; Dacquet,
C. Bioorg. Med. Chem. Lett. 2005, 15, 4421. (d) Peifer, C.; Urich, R.; Schattel,
€
V.; Abadleh, M.; Rottig, M.; Kohlbacher, O.; Laufer, S. Bioorg. Med. Chem.
Lett. 2008, 18, 1431. (e) Mabire, D.; Coupa, S.; Adelinet, C.; Poncelet, A.;
Simonnet, Y.; Venet, M.; Wouters, R.; Lesage, A. S. J.; Beijsterveldt, L. V.;
Bischoff, F. J. Med. Chem. 2005, 48, 2134.
(11) Suginome, M.; Fukuda, T.; Ito, Y. Org. Lett. 1999, 1, 1977.
(12) Liu, L.; Wang, Y.; Wang, H.; Peng, C.; Zhao, J.; Zhu, Q. Tetrahedron
Lett. 2009, 50, 6715.
7502 J. Org. Chem. 2010, 75, 7502–7504
Published on Web 10/11/2010
DOI: 10.1021/jo1017525
r
2010 American Chemical Society