Vapochromic Hydrogen-Bonded Proton-Transfer Assemblies
A R T I C L E S
with Au(I) ions have been also reported.4 In addition to
vapochromism, some of the Au(I) complexes also showed
mechanochromism, the reversible color change induced by
applying mechanical pressure. Despite extensive studies on
vapochromic materials, it is still difficult to achieve vapor
selectivity and recognition capability in vapochromic materials
based on metallophilic interactions. This may be due to the fact
that most vapochromic complexes are molecule-based assembled
materials in which systematic control of the crystal structure is
difficult because of nondirectional intermolecular interactions,
such as van der Waals and Coulomb interactions. Much effort
has been devoted to achieving vapor selectivity and recognition
capability. Castellano and co-workers reported a Pt(II)-diimine
based sensor microarray in which the vapor recognition capabil-
ity was achieved by combining eighteen different vapochromic
Pt(II)-terpyridyl chloride complexes.7 Another approach is to
incorporate well-known photofunctional molecules into solid
state materials.8 For example, fluorescent metal-organic frame-
works built from photofunctional ligands and various metal ions
are promising because their rigidity and permanent porosity
enable shape and size selective sensing.8 In fact, this type of
materials shows guest-dependent luminescent properties.
The hydrogen bond is one of the most effective interactions
for controlling crystal structure. It has been extensively utilized
in various fields such as supramolecular chemistry, molecular
recognition, and sensing.9 Eisenberg and co-workers have
reported the vapochromism of hydrogen bonded Pt(II)-diimine
complex [Pt(Nttpy)Cl](PF6)2 (Nttpy ) 4′-(p-nicotinamide-N-
methylphenyl)-2,2′:6′,2′′-terpyridine).10 Naota and co-workers
recently studied vapochromic organic S-shaped supramolecules
in which the hydrogen bond plays an important role in both
their recognition and vapor adsorption abilities.11 We have also
designed a hydrogen bonded vapochromic Pt(II) complex,
[Pt(CN)2(H2dcbpy)]·2H2O (H2dcbpy ) 4,4′-dicarboxy-2,2′-
bipyridine), and found that its vapochromism derives from the
formation/deformation and transformation of the hydrogen bond
network accompanied by significant changes in metallophilic
interactions.12 These studies suggest that hydrogen bonding
interactions are also useful for regulating the crystal structures
of vapochromic materials and may be promising for achieving
vapor selectivity and recognition capability.
affect both proton donating and accepting molecules. The proton
is known to move in the hydrogen bond when the donor-acceptor
distance is sufficiently short.13 In some cases, this proton
movement can provide interesting properties such as molecular
ferroelectricity.14 In this work, aiming at constructing a new
vapochromic system utilizing flexible hydrogen bonds and
proton transfer, we have designed a series of hydrogen-bonded
proton-transfer(HBPT)assembliesthatconsistofametal-hydrazone
unit as a proton acceptor and bromanilic acid as a proton donor.
In this paper, we report the structures and acid-base behaviors
of newly synthesized metal-hydrazone complexes [MX(mtbhp)]
(M ) Pd2+, X ) Cl- (1); M ) Pd2+, X ) Br- (2); M ) Pt2+
,
X ) Cl- (3); Hmtbhp )2-(2-(2-(methylthio)benzylidene)hy-
drazinyl)pyridine) and the physical properties of their HBPT
(4) (a) Mansour, M. A.; Connick, W. B.; Lachicotte, R. J.; Gysling, H. J.;
Eisenberg, R. J. Am. Chem. Soc. 1998, 120, 1329–1330. (b) Rawash-
deh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr.; Galassi, R.;
Pietroni, B. R.; Burini, A. J. Am. Chem. Soc. 2001, 123, 9689–9691.
(c) Ferna´ndez, E. J.; Lo´pez-de-Luzuriaga, J. M.; Monge, M.; Olmos,
M. E.; Pe´rez, J.; Laguna, A.; Mohamed, A. A.; Fackler, J. P., Jr. J. Am.
Chem. Soc. 2003, 125, 2022–2023. (d) Ferna´ndez, E. J.; Lo´pez-de-
Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Pe´rez, J.;
Laguna, A.; Mendizabal, F.; Mohamed, A. A.; Fackler, J. P., Jr. Inorg.
Chem. 2004, 43, 3573–3581. (e) Lefebvre, J.; Batchelor, R. J.; Leznoff,
D. B. J. Am. Chem. Soc. 2004, 126, 16117–16125.
(5) (a) Ir: Liu, Z.; Bian, Z.; Bian, J.; Li, Z.; Nie, D.; Huang, C. Inorg.
Chem. 2008, 47, 8025–8030. (b) Ru: McGee, K. A.; Marquardt, B. J.;
Mann, K. R. Inorg. Chem. 2008, 47, 9143–9145.
(6) (a) Co: Beauvais, L. G.; Shores, M. P.; Long, J. R. J. Am. Chem. Soc.
2000, 122, 2763–2772. (b) Cu: Yamada, K.; Yagishita, S.; Tanaka,
H.; Tohyama, K.; Adachi, K.; Kaizaki, S.; Kumagai, H.; Inoue, K.;
Kitaura, R.; Chang, H.-C.; Kitagawa, S.; Kawata, S. Chem.sEur. J.
2004, 10, 2647–2660. (c) Yamada, K.; Tanaka, H.; Yagishita, S.;
Adachi, K.; Uemura, T.; Kitagawa, S.; Kawata, S. Inorg. Chem. 2006,
45, 4322–4324. (d) Ag: Ferna´ndez, E. J.; Lo´pez-de-Luzuriaga, J. M.;
Monge, M.; Olmos, M. E.; Puelles, R. C.; Laguna, A.; Mohamed,
A. A.; Fackler, J. P., Jr. Inorg. Chem. 2008, 47, 8069–8076.
(7) Muro, M. L.; Daws, C. A.; Castellano, F. N. Chem. Commun. 2008,
6134–6136.
(8) (a) Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. J. Am.
Chem. Soc. 2008, 130, 6718–6719. (b) Allendorf, M. D.; Bauer, C. A.;
Bhakta, R. K.; Houk, R. J. T. Chem. Soc. ReV. 2009, 38, 1330–1352.
(c) Stylianou, K. C.; Heck, R.; Chong, S. Y.; Bacsa, J.; Jones, J. T. A.;
Khimyak, Y. Z.; Bradshaw, D.; Rosseinsky, M. J. J. Am. Chem. Soc.
2010, 132, 4119–4130.
(9) (a) MacDonald, J. C.; Whitesides, G. M. Chem. ReV. 1994, 94, 2363–
2420. (b) Zaman, M. B.; Tomura, M.; Yamashita, Y. J. Org. Chem.
2001, 66, 5987–5995. (c) Sobczyk, L.; Grabowski, S. J.; Krygowski,
T. M. Chem. ReV. 2005, 105, 3513–3560. (d) Lena, S.; Masiero, S.;
Pieraccini, S.; Spada, G. P. Chem.sEur. J. 2009, 16, 7792–7806. (e)
Boldog, I.; Daran, J.-C.; Chernega, A. N.; Rusanov, E. B.; Krautscheid,
H.; Domasevitch, K. V. Cryst. Growth Des. 2009, 9, 2895–2905.
(10) Wadas, T. J.; Wang, Q.-M.; Kim, Y.-J.; Flaschenreim, C.; Blanton,
T. N.; Eisenberg, R. J. Am. Chem. Soc. 2004, 126, 16841–16849.
(11) Takahashi, E.; Takaya, H.; Naota, T. Chem.sEur. J. 2010, 16, 4793–
4802.
Our recent attention has focused on proton transfer in
hydrogen bonds because proton transfer would significantly
(3) (a) Kunugi, Y.; Miller, L. L.; Mann, K. R.; Pomije, M. K. Chem.
Mater. 1998, 10, 1487–1489. (b) Lu, W.; Chan, M. C. W.; Cheung,
K.-K.; Che, C.-M. Organometallics 2001, 20, 2477–2486. (c) Drew,
S. M.; Janzen, D. E.; Buss, C. E.; MacEwan, D. I.; Dublin, K. M.;
Mann, K. R. J. Am. Chem. Soc. 2001, 123, 8414–8415. (d) Buss, C. E.;
Mann, K. R. J. Am. Chem. Soc. 2002, 124, 1031–1039. (e) Kato, M.;
Omura, A.; Toshikawa, A.; Kishi, S.; Sugimoto, Y. Angew. Chem.
2002, 114, 3315–3317; Angew. Chem., Int. Ed. 2002, 41, 3183-3185.
(f) Kishi, S.; Kato, M. Mol. Cryst. Liq. Cryst. 2002, 379, 303–308.
(g) Lu, W.; Chan, M. C. W.; Zhu, N.; Che, C.-M.; He, Z.; Wong,
K.-Y. Chem.sEur. J. 2003, 9, 6155–6166. (h) Grove, L. J.; Ren-
nekamp, J. M.; Jude, H.; Connick, W. B. J. Am. Chem. Soc. 2004,
126, 1594–1595. (i) Kui, S. C. F.; Chui, S. S.-Y.; Che, C.-M.; Zhu,
N. J. Am. Chem. Soc. 2006, 128, 8297–8309. (j) Kato, M. Bull. Chem.
Soc. Jpn. 2007, 80, 287–294. (k) Du, P.; Schneider, J.; Brennessel,
W. W.; Eisenberg, R. Inorg. Chem. 2008, 47, 69–77. (l) Grove, L. J.;
Oliver, A. G.; Krause, J. A.; Connick, W. B. Inorg. Chem. 2008, 47,
1408–1410. (m) Fornies, J.; Fuertes, S.; Lopez, J. A.; Martin, A.;
Sicilia, V. Inorg. Chem. 2008, 47, 7166–7176. (n) Kobayashi, A.;
Fukuzawa, Y.; Noro, S.; Nakamura, T.; Kato, M. Chem. Lett. 2009,
38, 998–999. (o) Ni, J.; Wu, Y.-H.; Zhang, X.; Li, B.; Zhang, L.-Y.;
Chen, Z.-N. Inorg. Chem. 2009, 48, 10202–10210. (p) Kobayashi,
A.; Hara, H.; Noro, S.; Kato, M. Dalton Trans. 2010, 39, 3400–3406.
(q) Kobayashi, A.; Yonemura, T.; Kato., K. Eur. J. Inorg. Chem. 2010,
2465–2470.
(12) Kato, M.; Kishi, S.; Wakamatsu, Y.; Sugi, Y.; Osamura, Y.; Ko-
shiyama, T.; Hasegawa, M. Chem. Lett. 2005, 34, 1368–1369.
(13) (a) Ishida, H.; Kashino, S. Acta Crystallogr., Sect. C 1999, 55, 1714–
1717. (b) Nihei, T.; Ishimaru, S.; Ishida, H.; Ishihara, H.; Ikeda, R.
Chem. Lett. 2000, 1346–1347. (c) Ikeda, R.; Takahashi, S.; Nihei, T.;
Ishihara, H.; Ishida, H. Bull. Chem. Soc. Jpn. 2005, 78, 1241–1245.
(d) Sawka-Dobrowolska, W.; Bator, G.; Sobczyk, L.; Grech, E.;
Nowicka-Scheibe, J.; Pawlukojc, A. Struct. Chem. 2005, 16, 281–
286. (e) Suzuki, H.; Mori, H.; Yamaura, J.; Matsuda, M.; Tajima, H.;
Mochida, T. Chem. Lett. 2007, 36, 402–403.
(14) (a) Szafranski, M.; Katrusiak, A.; McIntyre, G. Phys. ReV. Lett. 2002,
89, 215507. (b) Horiuchi, S.; Ishii, F.; Kumai, R.; Okimoto, Y.;
Tachibana, H.; Nagaosa, N.; Tokura, Y. Nat. Mater. 2005, 4, 163–
166. (c) Kumai, R.; Horiuchi, S.; Okimoto, Y.; Tokura, Y. J. Chem.
Phys. 2006, 125, 084715. (d) Horiuchi, S.; Kumai, R.; Tokura, Y.
Angew. Chem., Int. Ed. 2007, 46, 3497–3501. (e) Horiuchi, S.; Kumai,
R.; Tokunaga, Y.; Tokura, Y. J. Am. Chem. Soc. 2008, 130, 13382–
13391. (f) Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.;
Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Nature 2010, 463, 789–
792.
9
J. AM. CHEM. SOC. VOL. 132, NO. 43, 2010 15287