Tommaso Lanza et al.
FULL PAPERS
activity of free radicals in complex environments and their
role in oxidative processes and in organic synthesis”).
[9] a) J. Robertson, M. J. Palframan, S. A. Shea, K. Teha-
banenko, W. P. Unsworth, C. Winters, Tetrahedron
2008, 64, 11896; b) G. Bencivenni, T. Lanza, R. Leardi-
ni, M. Minozzi, D. Nanni, P. Spagnolo, G. Zanardi J.
Org. Chem. 2008, 73, 4721; c) D. H. Hey, G. H. Jones,
M. J. Perkins, J. Chem. Soc. C 1971, 116; see also ref.[7]
and d) D. H. Hey, C. W. Rees, A. R. Todd, J. Chem.
Soc. C 1967, 1518, where the authors reported an ex-
ample of synthesis of spirocyclic dienone derivatives by
trapping of 4-unsubstituted spirocyclohexadienyl radi-
cals by dioxygen.
[10] p-Azidobenzoyl and 2-(p-azidophenyl)acetyl chloride
are prepared by conversion of the commercially avail-
able amino acids into azides via conventional treatment
of the diazonium salts with sodium azide.
[11] Heating of the iminium hydroiodide 14 in methanol/
water or THF/water in the presence of hydrochloric
acid gave rise to unclear product mixtures from which
we gained no diagnostic 1H NMR data in favour of pro-
tected (or deprotected) indolone 6.
[12] I. G. C. Coutts, N. J. Culbert, M. Edwards, J. A. Had-
field, D. R. Musto, V. H. Pavlidis, D. J. Richards, J.
Chem. Soc. Perkin Trans. 1 1985, 1829.
[13] We happened to observe that deprotection of the oxin-
dole cyclohexanone 19 could be significantly improved
through a preliminary conversion of the methoxymethyl
to the ethoxymethyl group.
[14] Parallel experiments suggested that the imine hydroio-
dides 21, when similarly reacted in THF/water or meth-
anol/water, undergo usual hydrolysis exclusive of de-
protection of the MOM group (see Supporting Infor-
mation).
References
[1] a) J. Halasz, B. Podanyi, A. Santa-Csutor, Z. Bocskei,
K. Simon, M. Hanusz, I. Hermecz, J. Mol. Struct. 2003,
654, 187; b) I. Hermecz, A. Santa-Csutor, C. Gçnczi, G.
Heja, E. Csikos, K. Simon, A. Smelko-Esek, B. Poda-
nyi, Pure Appl. Chem. 2001, 73, 1401; c) A. Santa-
Csutor, Z. Mucsi, Z. Finta, C. Gonczi, J. Halasz, E.
Csikos, I. Hermecz, Eur. J. Org. Chem. 2006, 1769.
[2] a) C. Thal, C. Guillou, J. C. Beunard, E. Gras, P. Potier,
French Patent 2,826,005 A1; Chem. Abstr. 2003, 138,
39446; b) J. Pereira, M. Barlier, C. Guillou, Org. Lett.
2007, 9, 3101.
[3] The presence of the electron-withdrawing N-Boc sub-
stituent is a prerequisite for crucial cleavage of the
lactam dihydroquinolinone function by primary amine
and thence for final achievement of the desired tetracy-
clic ketone product, see: L. Moisan, M. Wagner, S. Co-
messe, E. Doris, Tetrahedron Lett. 2006, 47, 9093, and
ref.[2b]
[4] a) A. Di Malta, L. Foulon, G. Garcia, D. Nisato, R.
Roux, C. Serradeil-Le Gal, G. Valette, J. Wagon, US
Patent 5,849,780; Chem. Abstr. 1999, 130, 66390;
b) N. A. Jonsson, P. Moses, SE Patent 366,309, 1974;
Chem. Abstr. 1975, 83, 79076; c) N. A. Jonsson, P.
Moses, Acta Chem. Scand. B 1974, 28, 225.
[5] a) H. Venkatesan, M. C. Davis, Y. Altas, J. P. Snyder,
D. C. Liotta, J. Org. Chem. 2001, 66, 3653; b) C.
Gonczi, E. Csikos, I. Hermecz, G. Heja, A. Illar, L.
Nagy, A. Santa-Csutor, K. Simon, A. Smelko-Esek, T.
Szomor, PTC Int. Appl. WO0105760, 2001; Chem.
Abstr. 2001, 134, 115851; c) L. Foulon, G. Garcia, C.
Serradeil-Le Gal, G. Valette, Patent WO9715556A1,
1997; Chem. Abstr. 1997, 127, 5010; d) R. S. Johnos,
T. O. Lovett, T. S. Steven, J. Chem. Soc. C 1970, 796.
[6] E. M. Beccalli, F. Clerici, M. L. Gelmi, Tetrahedron
2003, 59, 4615.
[15] 2-(4-Oxo-1-cyclohexenyl)-ortho-iodoacetanilides
are
obtained by heating the corresponding 2-iodoanilines
with oxo-protected 2-(4-oxo-1-cyclohexenyl)acetic acid
in the presence of 2-chloro-1-methylpyridinium iodide
and NEt3: see ref.[2b] The requisite acid is achieved by
troublesome Birch reduction of 2-(p-methoxyphenyl)-
acetic acid with fivefold excess of lithium wire in dried
ammonia at À788C, followed by protection with ethyl-
ene glycol/BF3·OEt2, see: M. Varin, E. Barrꢂ, B. Iorga,
C. Guillou, Chem. Eur. J. 2008, 14, 6606.
[7] F. Gonzalez-Lopez de Turiso, D. P. Curran, Org. Lett.
2005, 7, 151.
[16] Reactions can also be successfully performed on a
larger scale (1.5 mmol of the starting azide substrate)
without any significant change in the outcoming prod-
ucts.
[8] a) M. Minozzi, D. Nanni, P. Spagnolo, Chem. Eur. J.
2009, 15, 7830; b) T. Lanza, R. Leardini, M. Minozzi,
D. Nanni, P. Spagnolo, G. Zanardi, Angew. Chem. 2008,
120, 9581; Angew. Chem. Int. Ed. 2008, 47, 9439.
2280
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2010, 352, 2275 – 2280