5472
K. Yaji, M. Shindo / Tetrahedron Letters 51 (2010) 5469–5472
5. (a) Taniguchi, T.; Tanabe, G.; Muraoka, O.; Ishibashi, H. Org. Lett. 2008, 10, 197;
Table 2
(b) Taniguchi, T.; Ishibashi, H. Tetrahedron 2008, 64, 8773.
6. Shindo, M.; Yaji, K.; Kita, T.; Shishido, K. Synlett 2007, 1096.
7. For a review on torquoselective olefination, see: Shindo, M.; Mori, S. Synlett
2008, 2231.
8. Yaji, K.; Shindo, M. Synlett 2009, 2524.
9. For construction of a-exo-methylene cyclopentenones via Nazarov cyclization,
Synthesis of the A-ring of stemonamide (1) via C–H amination
O
O
O
Rh2(OAc)4 (5mol%)
MgO, PhI(OAc)2
O
O
O
H
N
NH2
OR
H
toluene
see: (a) Tius, M. A.; Astrab, D. P. Tetrahedron Lett. 1984, 25, 1539; (b) Tius, M. A.
Acc. Chem. Res. 2003, 36, 284; (c) de los Santos, D. B.; Banaag, A. R.; Tius, M. A.
Org. Lett. 2006, 8, 2579; For the total synthesis of natural products via cationic
cyclopentannelation of allenyl ether, see: (d) Drake, D. J.; Tius, M. A.
Tetrahedron Lett. 1996, 52, 14651; (e) Wan, L.; Tius, M. A. Org. Lett. 2007, 9,
647; (f) Berger, G. O.; Tius, M. A. J. Org. Chem. 2007, 72, 6473.
OR
3
2
Entry
R
3
Temp (°C)
Time (h)
Yield (%)
1
2
3
4
5
TIPS
H
TMS
Ms
Ac
3g
3f
3i
3j
3h
125
80
25
125
125
6
3
1
1
0
80
0
<5
80
10. The ester 7a was prepared from 1,5-pentanediol by a four-step sequence: (a)
NaH, TBDPSCl; THF, room temperature; (b) (COCl)2, DMSO, Et3N; CH2Cl2,
À78 °C to room temperature; (c) NaClO2, NaH2PO4; t-BuOH/THF/2-methyl-2-
butene (3:1:1), H2O, room temperature; (d) EtBr, K2CO3; DMF, room
temperature (78% yield).
0.6
11. For a review on ynolates, see: Shindo, M. Tetrahedron 2007, 63, 10.
12. Shindo, M.; Kita, T.; Kumagai, T.; Matsumoto, K.; Shishido, K. J. Am. Chem. Soc.
2006, 128, 1062.
13. Mannekens, E.; Tourwé, D.; Lubell, W. D. Synthesis 2000, 1214.
14. The alkenyl bromide 9 was prepared from 2-butyn-1-ol in two steps, as
follows: (1) Cp2TiCl2 (cat.), i-BuMgCl; Et2O, room temperature; then (BrCF2)2;
THF, room temperature; (2) TBSCl, imidazole, DMAP; CH2Cl2, room
temperature (57% yield).
15. An ester having a methoxy group at the terminal position in place of TBDPSO
gave the olefinated product in low yield. The reason for this is not clear.
16. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U.-H.;
Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461.
17. Procedure for the synthesis of 13e: To a solution of 18e (986 mg, 2.47 mmol) in
14 mL of CH2Cl2/t-BuOH (1:1), under argon, was added anhydrous FeCl3
(401 mg, 2.47 mmol). After 3 min at room temperature, the mixture was
quenched by saturated aqueous NaHCO3 and extracted with CH2Cl2. The
organic extracts were washed with saturated aqueous NaHCO3 and brine and
dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified
by column chromatography over silica gel (5–7% EtOAc/hexane) to give 13e
(593.9 mg, 71%) as a yellow oil. 1H NMR (400 MHz, CDCl3) d 0.01 (s, 3H), 0.02 (s,
3H), 0.85 (s, 9H), 1.52–1.68 (m, 4H), 1.79 (d, J = 1.6 Hz, 3H), 2.40–2.49 (m, 1H),
2.52–2.61 (m, 1H), 3.30–3.37 (m, 1H), 3.30 (s, 3H), 3.39 (t, J = 6.4 Hz, 2H), 3.70–
3.74 (m, 1H), 3.78–3.82 (m, 1H), 5.42 (s, 1H), 6.06 (t, J = 1.6 Hz, 1H); 13C NMR
(100 MHz, CDCl3) d À5.88, À5.84, 8.10, 17.8, 23.8, 25.5, 28.3, 29.4, 46.6, 58.3,
63.8, 72.0, 114.8, 138.8, 144.0, 168.1, 195.7; IR (neat) 2930, 1697, 1119,
484.2 cmÀ1; MS (FAB) m/z 339 (M++H); HRMS (FAB) m/z calcd for C19H35O3Si
(M++H): 339.2355, found: 339.2360.
3h (R = Ac) successfully afforded the spirocyclic products 2f and
2h20 in high yields, respectively (entries 2 and 5).
In conclusion, we have synthesized the core skeleton of stemo-
namide (1) via the Nazarov reaction, in which a new method for
the selective synthesis of the
a-exo-methylene cyclopentenones
from b-alkoxy divinyl ketones has been developed. The spirocyclic
products 2 have a fully substituted cyclopentenone bearing appro-
priate functionality for stemonamide (1) and thus would be a po-
tential precursor for its total synthesis. Furthermore, this study
demonstrates the synthetic utility of the torquoselective olefin-
ation via ynolates as well as the Nazarov reaction.
Acknowledgments
This research was partially supported by a Grant-in-Aid for Sci-
entific Research (B) (22390002) and the Program for the Promotion
of Basic and Applied Research for Innovations in the Bio-oriented
Industry (BRAIN). One of the authors (K.Y.) also acknowledges
the support of the JSPS.
18. (a) Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J. Tetrahedron 2009, 65,
3042; For reviews on C–H amination, see: (b) Espino, C. G.; Du Bois, J. In Modern
Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim,
2005; pp 379–416; (c) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
19. Akiyama, T.; Shima, H.; Ozaki, S. Tetrahedron Lett. 1991, 32, 5593.
20. Compound 2h: 1H NMR (600 MHz, CDCl3) d 1.60–1.77 (m, 4H), 1.87 (s, 3H),
2.06 (s, 3H), 2.40–2.47 (m, 1H), 2.48–2.62 (m, 1H), 4.06–4.15 (m, 2H), 4.37 (dd,
J = 13.8 Hz, 9.0 Hz, 2H), 5.71 (bs, 1H), 5.72 (s, 1H), 6.25 (s, 1H); 13C NMR
(150 MHz, CDCl3) d 8.74, 20.9, 24.9, 25.7, 28.9, 63.5, 64.6, 73.5, 117.5, 142.4,
146.2, 158.6, 163.2, 171.2, 192.4; IR (neat) 3306, 2956, 2926, 1770, 1732, 1715,
1248, 1038, 468.7 cmÀ1; MS (ESI) m/z 316 (M++Na); HRMS (FAB) m/z calcd for
References and notes
1. For reviews on stemona alkaloids, see: (a) Pilli, R. A.; Ferreira de Oliveira, M. C.
Nat. Prod. Rep. 2000, 17, 117; (b) Alibes, R.; Figueredo, M. Eur. J. Org. Chem. 2009,
2421.
2. Greger, H. Planta Med. 2006, 72, 99.
3. Ye, Y.; Qin, G.-W.; Xu, R.-S. J. Nat. Prod. 1994, 57, 655.
4. (a) Kende, A. S.; Martin Hernando, J. I.; Milbank, J. B. J. Org. Lett. 2001, 3, 2505;
(b) Kende, A. S.; Martin Hernando, J. I.; Milbank, J. B. J. Tetrahedron 2002, 58, 61.
C
15H20O5N (M++H): 294.1341, found: 294.1343.