ORGANIC
LETTERS
2010
Vol. 12, No. 22
5112-5115
Stereoselective Synthesis of
Spirooxindole Amides through Nitrile
Hydrozirconation
Chunliang Lu, Qing Xiao, and Paul E. Floreancig*
Department of Chemistry, UniVersity of Pittsburgh, Pittsburgh,
PennsylVania 15260, United States
florean@pitt.edu
Received September 19, 2010
ABSTRACT
Spirooxindole amides can be prepared by the intramolecular addition of functionalized indoles into acylimines that are accessed from nitriles
by hydrozirconation and acylation. The stereochemical outcome at the quaternary center was controlled by the steric bulk of the substituent
at the 2-position of the indole unit. The products are well-suited for diversification to prepare libraries.
The spirooxindole unit is earning the status of “privileged
structure” in synthetic and medicinal chemistry, as evidenced
by a number of recent reviews1 and the rapid development
of new methods for their synthesis.2 The biological activity
that a number of spirooxindoles exhibit has spawned library
syntheses3 that led to the identification of potent MDM2
inhibitors,4 adjuvants of the actin polymerization inhibitor
latrunculin B,3a and antimalarial agents.5 We have developed
a new protocol for stereoselective spirooxindole synthesis
in accord with our interest in preparing structurally diverse
amides through nucleophilic addition reactions to acylimines.
These acylimines derive from nitriles via a sequence of nitrile
(1) (a) Zhou, F.; Liu, Y.-L.; Zhou, J. AdV. Synth. Catal. 2010, 352, 1381.
(b) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(c) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
(3) (a) Lo, M. M.-C.; Neumann, C. S.; Nagayama, S.; Perlstein, E. O.;
Schreiber, S. L. J. Am. Chem. Soc. 2004, 126, 16077. (b) Chen, C.; Li, X.;
Neumann, C. S.; Lo, M. M.-C.; Schreiber, S. L. Angew. Chem., Int. Ed.
2005, 44, 2249.
(2) For selected recent examples, see: (a) Zhang, Y.; Panek, J. S. Org.
Lett. 2009, 11, 3366. (b) Shintani, R.; Hiyashi, S.-y.; Murakami, M.; Takeda,
M.; Hiyashi, T. Org. Lett. 2009, 11, 3754. (c) Bencivenni, G.; Wu, L.-Y.;
Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M.-P.; Bartoli, G.;
Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7200. (d) Chen, X.-H.;
Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131,
13819. (e) Liang, B.; Kalidindi, S.; Porco, J. A., Jr.; Stephenson, C. R. J.
Org. Lett. 2010, 12, 572. (f) Jiang, K.; Jia, Z.-J.; Chen, S.; Wu, L.; Chen,
Y.-C. Chem.sEur. J. 2010, 16, 2852. (g) Viswambharan, B.; Selvakumar,
K.; Madhavan, S.; Shanmugam, P. Org. Lett. 2010, 12, 2108. (h) White,
J. D.; Li, Y.; Ihle, D. C. J. Org. Chem. 2010, 75, 3569. (i) Jaegli, S.; Erb,
W.; Retailleau, P.; Vors, J.-P.; Neuville, L.; Zhu, J. Chem.sEur. J. 2010,
16, 5863. (j) Chen, W.-B.; Wu, Z.-J.; Pei, Q.-L.; Cun, L.-F.; Zhang, X.-
M.; Yuan, W.-C. Org. Lett. 2010, 12, 3132.
(4) (a) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.;
Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish,
D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
(b) Yu, S.; Qin, D.; Shangary, S.; Chen, J.; Wang, G.; Ding, K.; McEachern,
D.; Qiu, S.; Nikolovska-Coleska, Z.; Miller, R.; Kang, S.; Yang, D.; Wang,
S. J. Med. Chem. 2009, 52, 7970.
(5) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou,
B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen,
S. B.; Spencer, K. R.; Gonza´lez-Pa´ez, G.; Lakshminarayana, S. B.; Goh,
A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H.-P.; Brun, R.; Nosten,
F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.;
Diagana, T. T. Science 2010, 329, 1175.
10.1021/ol102246d 2010 American Chemical Society
Published on Web 10/20/2010