Struct Chem (2010) 21:989–993
993
X2S diffractometer. B.I. and M.S. thank the DAAD for a grant within
the priority program ‘‘Stability Pact South-Eastern Europe’’. M.S.
wishes to thank the DFG for Grant SP 255/21-1.
higher than 500 °C, neither are they hygroscopic. All the
crystals are colourless and posses a large transmission
window with a range 260–1100 nm as well as low intensive
IR bands within the range 5000–400 cm-1. Compound (1)
forms hydrate-free crystals, thus avoiding the evaporation of
water and degradation under prolonged exposure to laser
radiation.
References
1. Koleva B, Kolev T, Seidel R, Spiteller M, Mayer-Figge H,
Sheldrick W (2009) J Phys Chem 113A:3088
2. Koleva B, Kolev T, Seidel R, Mayer-Figge H, Spiteller M,
Sheldrick W (2008) J Phys Chem 112A:2899
Experimental
3. Ivanova B, Spiteller M (2010) J Phys Chem A 114:5099
4. Karle I, Ranganathan D, Haridas V (1996) J Am Chem Soc
118:7128
Synthesis
5. Gilli G, Bertolasi V, Gilli P, Ferretti V (2001) Acta Crystallogr
B57:859
Pyridinium-4-aldoxime mandelate (1), 1-aminoisoquino-
linium mandelate mandelic acid (2), 2-amino-8-hydro-
xyquinolinium mandelate (3) and phenylalaninamide
mandelate monohydrate (4) were obtained by mixing
equimolar amounts of the pyridine-4-aldoxime mandelate
(0.1231 g), 1-aminoisoquinoline (0.1150 g), 2-amino-8-
hydroxyquinoline (0.5671 g) or phenylalaninamide
(0.3141 g) with 0.4575 g mandelic acid (all Sigma-Aldrich
products) in 20 ml methanol/water 1:1 at under stirring for
30 min at 150 °C. The resulting colourless crystals (Fig. 1)
were filtered off, washed with CH3OH and dried on P2O5 at
298 K. Yields 91 (1), 43 (2), 66 (3) and 89 (4)%, respec-
tively. Found (1): C, 61.35; H, 5.14; N, 10.28; calcd. for
C14H14O4N2: C, 51.31; H, 5.14; N, 10.21%. Found (2): C,
67.35; H, 5.17; N, 6.28; calcd. for C25H23O6N2: C, 67.11;
H, 5.18; N, 6.26%. Found (3): C, 65.35; H, 5.14; N, 8.98;
calcd. for C17H16O4N2: C, 65.38; H, 5.16; N, 8.97%. Found
(4): C, 62.99; H, 6.27; N, 8.68; calcd. for C34H40O9N4: C,
62.95; H, 6.22; N, 8.64%. Thermal analysis applied to
(1)–(4) over the range 0–500 °C confirmed the crystallo-
graphic data for the presence or absence of the solvent
molecules in the compounds.
6. Bosshard Ch, Hulliger J, Florsheimer M, Gu¨nter P (2001)
Organic nonlinear optical materials, advances in nonlinear optics.
Gordon and Breach Science Publishers SA, Postfach, Basel
7. Chemla D, Zyss J (1987) In: Chemla D, Zyss J (eds) Nonlinear
optical properties of organic molecules and crystals, vol 1.
Academic Press, New York, pp 23–187
8. Nalwa H, Watanabe T, Miyata S (1997) In: Nalwa HS, Miyata S
(eds) Nonlinear optics of organic molecules and polymers. CRC
Press, Boca Raton, pp 89–329
9. Reetz M, Hoger S, Harris K (1994) Angew Chem Int Ed 33:181
10. Saha BK, Nangia A, Nicoud J-F (2006) Cryst Growth Des 6:1278
11. Brian P (1991) USA Patent PCT/GB/91/00616, 1991
12. Andrews L, Kelsall BJ, Blankenship TA (1982) J Phys Chem
86:2916
13. Andrews L, Friedman RS, Kelsall BJ (1985) J Phys Chem 89:
4550
14. Ofir Y, Zelichenok A, Yitzchaik S (2006) J Mater Chem 16:2141
15. Mebel AM, Hayashi M, Liang KK, Lin SH (1999) J Phys Chem
A 103:10674
16. Zhao Y, Truhlar D (2008) Acc Chem Res 41:157
17. Schultz N, Zhao Y, Truhlar D (2008) J Comput Chem 29:185
18. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215
20. Ivanova B, Spiteller M (2010) Cryst Growth Des. doi:10.1021/cg
Acknowledgements B. I. wishes to thank Alexander von Humboldt
Foundation for the Fellowship and for the donation of a Bruker Smart
123