1046
Y. Matano et al. / C. R. Chimie 13 (2010) 1035–1047
(i) G. Mora, O. Piechaczyk, R. Houdard, N. Me´zailles, X.-F. Le Goff, P. le
Floch, Chem. Eur. J. 14 (2008) 10047.
[3] (a) S. Holand, M. Jeanjean, F. Mathey, Angew. Chem., Int. Ed. Engl. 36
(1997) 98;
from The Cambridge Crystallographic Data Centre via
(b) C. Hay, D.L. Vilain, V. Deborde, L. Toupet, R. Re´au, Chem. Commun.
(1999) 345;
3.9. Fluorescence lifetime measurements
´
´
´
(c) C. Fave, M. Hissler, K. Senechal, I. Ledoux, J. Zyss, R. Reau, Chem.
The time profiles of fluorescence in CH2Cl2 at 21 8C were
measured by a streak camera, using the second harmonic
output (400 nm, 150 fs) of a Ti:Sapphire regenerative
amplifier system as an excitation source. The fluorescence
decays of 4b and 7 were well fitted by the single
exponential component.
Commun. (2002) 1674;
(d) M. Sauthier, F. Leca, L. Toupet, R. Reau, Oranometallics 21 (2002)
1591.
´
[4] (a) E. Deschamps, F. Mathey, J. Org. Chem. 55 (1990) 2494;
(b) M.-O. Bevierre, F. Mercier, L. Ricard, F. Mathey, Bull. Soc. Chim. Fr.
129 (1992) 1;
´
(c) C. Hay, C. Fischmeister, M. Hissler, L. Toupet, R. Reau, Angew. Chem.
Int. Ed. 39 (2000) 1812;
(d) C. Hay, M. Hissler, C. Fischmeister, J. Rault-Berthelot, L. Toupet, R.
Nyula´szi, R. Re´au, Chem. Eur. J. 7 (2001) 4222;
(e) C. Fave, T.-Y. Cho, M. Hissler, C.-W. Chen, T.-Y. Luh, C.-C. Wu, R.
3.10. Computational details
´
Reau, J. Am. Chem. Soc. 125 (2003) 9254;
The geometry optimization was performed by the
B3LYP method [22] with basis sets of 6-31G* [23] for C, H,
N, O, P, and Cl atoms and LANL2DZ [24] for Pt and Au atoms.
X-ray structures are used as initial geometries for 7m and
8m. We carried out vibration analysis with the B3LYP
method to ascertain that each optimized geometry was not
in saddle but in equilibrium points. The excited states and
oscillator strengths are evaluated by the TD-B3LYP
method, where forty excited states were solved. In
Table 2, the states whose oscillator strengths are less than
0.2 are not included. All calculations were carried out with
the Gaussian 03 package [25].
(f) H.-C. Su, O. Fadhel, C.- J. Yang, T.-Y. Cho, C. Fave, M. Hissler, C.-C. Wu,
R. Reau, J. Am. Chem. Soc. 128 (2006) 983;
(g) J. Casado, R. Re´au, J.T. Lo´pez Navarrete, Chem. Eur. 12 (2006) 3759;
(h) N.H.T. Huy, B. Donnadieu, F. Mathey, A. Muller, K. Colby, C.J.
Bardeen, Organometallics 27 (2008) 5521.
´
[5] S. Holand, N. Maigrot, C. Charrier, F. Mathey, Organometallics 17 (1998)
2996.
[6] F. Sato, H. Urabe, S. Okamoto, Chem. Rev. 100 (2000) 2835.
[7] (a) Y. Matano, T. Miyajima, T. Nakabuchi, Y. Matsutani, H. Imahori, J.
Org. Chem. 71 (2006) 5792;
(b) Y. Matano, T. Nakabuchi, T. Miyajima, H. Imahori, H. Nakano, Org.
Lett. 8 (2006) 5713;
(c) T. Miyajima, Y. Matano, H. Imahori, Eur. J. Org. Chem. (2008) 255;
(d) Y. Matano, T. Miyajima, T. Fukushima, H. Kaji, Y. Kimura, H. Imahori,
Chem. Eur. J. 14 (2008) 8102.
[8] (a) I. Tomita, M. Ueda, Macromol. Symp. 209 (2004) 217; (b) T. Sanji, K.
Shiraishi, M. Tanaka, Org. Lett. 9 (2007) 3611.
Acknowledgment
[9] Y. Matano, T. Miyajima, H. Imahori, Y. Kimura, J. Org. Chem. 72 (2007)
6200.
[10] Y. Matano, M. Nakashima, H. Imahori, Angew. Chem. Int. Ed. 48 (2009)
4002.
[11] Y. Matano, M. Nakashima, A. Saito, H. Imahori, Org. Lett. 11 (2009)
3338.
[12] (a) W. Chen, M.P. Cava, Tetrahedron Lett. 28 (1987) 6025;
(b) J.-M. L’Helgoual’ch, A. Seggio, F. Chevallier, M. Yonehara, E. Jean-
neau, M. Uchiyama, F. Mongin, J. Org. Chem. 73 (2008) 177;
(c) J.-M. L’Helgoual’ch, G. Bentabed-Ababsa, F. Chevallier, M. Yonehara,
M. Uchiyama, A. Derdour, F. Mongin, Chem. Commun. (2008) 5375.
[13] F. Beaumard, P. Dauban, R.H. Dodd, Org. Lett. 11 (2009) 1801.
[14] A. Saito, T. Miyajima, T. Fukushima, H. Kaji, Y. Matano, H. Imahori,
Chem. Eur. J. 15 (2009) 10000.
We thank Dr. Yoshihide Nakao (Kyoto University) for
his valuable suggestions about DFT calculations. We also
thank Prof. Hiroko Yamada and Mr. Daiki Kuzuhara (Ehime
University) for the measurement of absolute fluorescence
quantum yield of 4b and Prof. Yoshifumi Kimura (Kyoto
University) for the measurement of fluorescence lifetimes
of 4b and 7. This work was supported by a Grant-in-Aid for
Scientific Research on Innovative Areas (No. 21108511, ‘‘p-
Space’’) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
[15] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed.
Engl. 34 (1995) 1555.
[16] K. Shiraishi, T. Kashiwabara, T. Sanji, M. Tanaka, New J. Chem. 33 (2009)
1680.
References
´
[17] (a) F. Leca, M. Sauthier, V. Deborde, L. Toupet, R. Reau, Chem. Eur. J. 9
(2003) 3785;
[1] (a) F. Mathey, Angew. Chem. Int. Ed. 42 (2003) 1578;
(b) S. Graule, M. Rudolph, N. Vanthuyne, J. Autschbach, C. Roussel, J.
Crassous, R. Re´au, J. Am. Chem. Soc. 131 (2009) 3183;
(c) S. Welsh, B. Nohra, E.V. Peresypkina, C. Lescop, M. Scheer, R. Re´au,
Chem. Eur. J. 15 (2009) 4685;
´
(b) M. Hissler, P.W. Dyer, R. Reau, Coord. Chem. Rev. 244 (2003) 1;
(c) L.D. Quin, Curr. Org. Chem. 10 (2006) 43;
(d) T. Baumgartner, R. Reau, Chem. Rev. 106 (2006) 4681, Correction :
´
107 (2007) 303;
(d) Y. Dienes, M. Eggenstein, T. Neumann, U. Englert, T. Baumgartner,
Dalton Trans. (2006) 1424.
[18] (a) Y. Matano, T. Nakabuchi, T. Miyajima, H. Imahori, Organometallics
25 (2006) 3105;
(e) M. Hissler, C. Lescop, R. Re´au, Pure Appl. Chem. 79 (2007) 201;
(f) M.G. Hobbs, T. Baumgartner, Eur. J. Inorg. Chem. (2007) 3611;
(g) C. Lescop, M. Hissler, Tommorow’s Chem. Today (2008) 296;
´
(h) R. Reau, P.W. Dyer, In Comprehensive Heterocyclic Chemistry III; C.
(b) T. Nakabuchi, Y. Matano, H. Imahori, Organometallics 27 (2008)
3142.
A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Eds.; Elsevier: Oxford (2008),
Chapter 3.15;
[19] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G.
Polidori, M. Camalli, J. Appl. Cryst. 27 (1994) 435.
[20] DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R.
deGelder, R. Israel, J. M. M. Smits, 1999. The DIRDIF program system,
Technical Report of the Crystallography Laboratory, University of Nij-
megen, The Netherlands.
[21] G. M. Sheldrick, University of Go¨ttingen: Germany, 1997.
[22] (a) A.D. Becke, J. Chem. Phys. 98 (1988) 5648;
(b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[23] (a) W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972)
2257;
(i) Y. Matano, H. Imahori, Org. Biomol. Chem. 7 (2009) 1258;
(j) A. Fukazawa, S. Yamaguchi, Chem. Asian J. 4 (2009) 1386.
[2] (a) F.C. Leavitt, T.A. Manuel, F. Johnson, L.U. Matternas, D.S. Lehman, J.
Am. Chem. Soc. 82 (1960) 5099;
(b) E.H. Braye, W. Hu¨bel, I. Caplier, J. Am. Chem. Soc. 83 (1961) 4406;
(c) G. Ma¨rkl, R. Potthast, Chem., Int. Ed. Engl. 6 (1967) 86;
(d) S.S.H. Mao, T.D. Tilley, Macromolecules 30 (1997) 5566;
(e) B.L. Lucht, S.S.H. Mao, T.D. Tilley, J. Am. Chem. Soc. 120 (1998)
4354;
(f) J. Hydrio, M. Gouygou, F. Dallemer, J.-C. Daran, G.G.A. Balavoine, J.
Organomet. Chem. 595 (2000) 261;
(b) J.D. Dill, J.A. Pople, J. Chem. Phys. 62 (1975) 2921;
(c) P.C. Hariharan, J.A. Pople, Theoret. Chimica Acta 28 (1973) 213.
[24] W.R. Wadt, P.J. Hay, J. Chem. Phys. 82 (1985) 284.
(g) Y. Morisaki, Y. Aiki, Y. Chujo, Macromolecules 36 (2003) 2594;
(h) H.-C. Su, O. Fadhel, C.-J. Yang, T.-Y. Cho, C. Fave, M. Hissler, C.-C. Wu,
R. Re´au, J. Am. Chem. Soc. 128 (2006) 983;