M.S. Balakrishna et al. / Inorganica Chimica Acta 363 (2010) 3010–3016
3015
24 h to give a dark brown solution. The reaction mixture was fil-
tered and the solvent was removed under reduced pressure to give
a dark brown crystalline solid. The residue was washed with petro-
leum ether and dried under vacuum to get dark brown solid prod-
uct of 4. Yield 94%. Mp: 98–102 °C. Anal. Calc. for C52H54NP2O6Fe: C,
68. 87; H, 6.00; N, 1.54. Found: C, 68.52; H, 5.92; N, 1.50%. 31P {1H}
NMR (CDCl3) d: 123.6 (d, 2JPP = 120.9 Hz), 167.2 (d, 2JPP = 120.9 Hz).
1H NMR (CDCl3) d:, 3.79 (s, OCH3, 12H), 3.68 (d, CH2, 8H,
3JHH = 6.4 Hz), 4.92–4.99 (m, CH2, 8H), 5.90–5.96 (m. CH, 4H),
tained free of charge from The Cambridge Crystallographic Data
Acknowledgements
We are grateful to the Department of Science and Technology
(DST), New Delhi, for financial support of this work through Grant
SR/S1/IC-02/007. S.N. thanks CSIR, New Delhi for Junior Research
Fellowship (JRF). We also thank the Department of Chemistry
Instrumentation Facilities and National Single Crystal X-ray Dif-
fraction Facility, IIT Bombay, for spectral, analytical data and X-
ray structure determination.
6.5–7.4 (m, Ph, 21H). IR (nujol or KBr disk): m .
CO: 1982 cmꢁ1
4.6. Synthesis of [(AuCl)2{PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (5)
A solution of AuCl(SMe2) (0.03 g, 0.1 mmol) in dichloromethane
(5 mL) was added drop wise to a solution of 1 (0.041 g, 0.05 mmol)
in dichloromethane (5 mL) with constant stirring. The reaction
mixture was allowed to stir for 4 h, which was then concentrated
to 2 mL, layered with petroleum ether, and cooled to ꢁ20 °C to give
analytically pure white crystals of 5. Yield 76% Mp: 141–142 °C.
Anal. Calc. for C46H49NO8P2Au2Cl2: C, 43.48; H, 3.88; N, 1.10.
Found: C, 43.37; H, 3.79; N, 1.13%. 31P{1H}NMR (CDCl3) d:
111.2(s). 1H NMR (CDCl3) d:, 3.63 (s, OCH3, 12H), 3.31 (d, CH2,
References
[1] (a) P. Braunstein, F. Naud, Angew. Chem., Int. Ed. 40 (2001) 680;
(b) A.M. Masdeu-Bultó, M. Diéguez, E. Martin, M. Gómez, Coord. Chem. Rev.
242 (2003) 159;
(c) H. Chen, Y. Liu, S. Peng, S. Liu, Dalton Trans. (2003) 1419;
(d) D.S. McGuinness, P. Wasserscheid, D.H. Morgan, J.T. Dixon, Organometallics
24 (2005) 552;
(e) M.C. Aragoni, M. Arca, A. Bencini, A.J. Blake, C. Caltagirone, A. Decortes, F.
Demartin, F.A. Devillanova, E. Faggi, L.S. Dolci, A. Garau, F. Isaia, V. Lippolis, L.
Prodi, C. Wilson, B. Valtancoli, N. Zaccheroni, Dalton Trans. (2005) 2994.
[2] For recent example of P,O-ligands, see: (a) N. Oberbeckmann-Winter, X.
Morise, P. Braunstein, R. Welter, Inorg. Chem. 44 (2005) 1391;
(b) C. Muller, L.J. Ackerman, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, J.
Am. Chem. Soc. 126 (2004) 14960;
3
8H, JHH = 6.4 Hz), 5.056 (m, CH2, 8H), 5.88–5.96 (m, CH, 4H),
3
6.6(m, C6H3, 4H), 6.95 (d, C6H3, 4H, JHH = 7.94 Hz), 6.67 (s, C6H3,
4H), 7.32–7.57 (m, C6H5, 5H).
(c) F. Goettmann, D. Grosso, F. Mercier, F. Mathey, C. Sanchez, Chem. Commun.
(2004) 1240;
(d) W. Dai, Y. Li, Y. Zhang, K.W. Lai, J. Wu, Tetrahedron Lett. 45 (2004) 1999;
(e) P. Braunstein, B.T. Heaton, C. Jacob, L. Manzi, X. Morise, Dalton Trans. (2003)
1396.
4.7. Synthesis of [(g l-Cl)3Ru{PhN{P(OC6H3(OMe-o)
6-p-cymene)(
(C3H5-p))2}2}] (6)
A mixture of [Ru(g
6-cymene)Cl2]2 (0.03 g, 0.049 mmol) and 1
[3] For recent example of P,N-ligands, see: (a) R.J. Kloetzing, P. Knochel,
Tetrahedron: Asymmetry 17 (2006) 116;
(0.039 mg, 0.049 mmol) in THF (15 mL) was stirred under reflux
condition for 4 h. It was cooled to room temperature and filtered
through celite. The reddish orange colored solution was concen-
trated to 5 mL under reduced pressure and layered with 1 mL of
petroleum ether. Keeping this solution at ꢁ20 °C for one day affor-
ded red crystals of 6. Yield 73%. Anal. Calc. for C56H59NP2O8Cl4Ru2:
C, 52.54; H, 4.64; N, 1.09. Found: C, 52.68; H, 4.62; N, 1.08%.
31P{1H}NMR (CDCl3) d: 97.4 ppm; 1H NMR (CDCl3) d:, 3.63 (s,
(b) F. Speiser, P. Braunstein, L. Saussine, Dalton Trans. (2004) 1539;
(c) W. Tang, W. Wang, X. Zhang, Angew. Chem., Int. Ed. 42 (2003) 943;
(d) G. Chelucci, G. Orru, G.A. Pinna, Tetrahedron 59 (2003) 9471;
(e) P. Braunstein, J. Zhang, R. Welter, Dalton Trans. (2003) 507;
(f) T. Bunlaksananusorn, K. Polborn, P. Knochel, Angew. Chem., Int. Ed. 42
(2003) 3941.
[4] For recent example of P,S-ligands, see: (a) O. Piechaczyk, M. Doux, L. Ricard, P.
Le Floch, Organometallics 24 (2005) 1204;
(b) H. Liang, S. Ito, M. Yoshifuji, Org. Lett. 6 (2004) 425;
(c) A. Dervisi, R.L. Jenkins, K.M.A. Malik, M.B. Hursthouse, S. Coles, Dalton
Trans. (2003) 1133;
(d) M. Doux, N. Mézailles, M. Melaimi, L. Ricard, P. Le Floch, Chem. Commun.
(2002) 1566;
(e) J.R. Dilworth, N. Wheatley, Coord. Chem. Rev. 199 (2000) 89;
(f) X. Verdaguer, A. Moyano, M.A. Pericas, A. Riera, M.A. Maestro, J. Mahia, J.
Am. Chem. Soc. 122 (2000) 10242;
(g) D. Morales-Morales, R. Redón, Y. Zheng, J.R. Dilworth, Inorg. Chim. Acta 328
(2002) 39;
3
OCH3, 12H), 3.31 (d, CH2, 8H, JHH = 6.4 Hz), 5.056 (m, CH2, 8H),
5.88–5.96 (m, CH, 4H), 6.6 (m, C6H3, 4H), 6.95 (d, C6H3, 4H,
3JHH = 7.94 Hz), 6.67 (s, C6H3, 4H), 7.32–7.57 (m, C6H5, 5H). 5.21
3
3
(d, C6H4, 2H JHH = 5.5 Hz), and 5.05 (d, C6H4, 2H, JHH = 5.5 Hz),
3
1.24 (d, CH3, 6H, JHH = 6.7 Hz), 2.8 (sept, CH, H).
(h) J.R. Dilworth, D. Morales, Y. Zheng, J. Chem. Soc., Dalton Trans. (2000) 3007.
[5] (a) B.D. Dombek, J. Org. Chem. 43 (1978) 3408;
(b) W.C. Yeo, S.Y. Tee, H.B. Tan, G.K. Tan, L.L. Koh, P.H. Leung, Inorg. Chem. 43
(2004) 8102;
4.8. X-ray crystallography
Single crystal X-ray structural studies were performed on a CCD
Oxford Diffraction XCALIBUR-S diffractometer equipped with an
Oxford Instruments low-temperature attachment. Data were col-
(c) A.D. Sadow, A. Togni, J. Am. Chem. Soc. 127 (2005) 17012;
(d) S.A. Pullarkat, D. Yi, G.K. Li, P.H. Leung, Inorg. Chem. 45 (2006) 7455;
(e) Y. Zhang, S.A. Pullarkat, Y. Li, P.H. Leung, Inorg. Chem. 48 (2009) 5535;
(f) M. Yuan, S.A. Pullarkat, M. Ma, Y. Zhang, Y. Huang, Y. Li, A. Goel, P.H. Leung,
Organometallics 28 (2009) 780.
lected at 150(2) K using graphite-monochromated Mo Ka radiation
(k = 0.71073 Å). The strategy for the data collection was evaluated
a
[6] (a) M.S. Balakrishna, R. Panda, J.T. Mague, Inorg. Chem. 40 (2001) 5620;
(b) M.S. Balakrishna, R. Panda, J.T. Mague, J. Chem. Soc., Dalton Trans. (2002)
4617;
by using the CRYSALISPRO CCD software. The data were collected by the
standard ‘phi-omega scan’ techniques, and were scaled and re-
duced using CRYSALISPRO RED software. The structure was solved by di-
rect methods using SHELXS-97 [18] and refined by full matrix least
squares with SHELXL-97 [18], refining on F2. The positions of all the
atoms were obtained by direct methods. All non-hydrogen atoms
were refined anisotropically. The hydrogen atoms were placed in
geometrically constrained positions and refined with isotropic
temperature factors, generally 1.2 ꢃ Ueq of their parent atoms.
(c) S. Priya, M.S. Balakrishna, J.T. Mague, S.M. Mobin, Inorg. Chem. 42 (2003)
1272;
(d) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 44 (2005)
7925;
(e) C. Ganesamoorthy, M.S. Balakrishna, P.P. George, J.T. Mague, Inorg. Chem.
46 (2007) 848;
(f) C. Ganesamoorthy, M.S. Balakrishna, J.T. Mague, H.M. Tuononen, Inorg.
Chem. 47 (2008) 2764;
(g) C. Ganesamoorthy, M.S. Balakrishna, J.T. Mague, Inorg. Chem. 48 (2009)
3768.
[7] (a) B. Punji, C. Ganesamoorthy, M.S. Balakrishna, J. Mol. Catal. A 259 (2006) 78;
(b) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45 (2006) 9454;
(c) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 46 (2007) 11316;
(d) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 46 (2007) 10268;
(e) M.S. Balakrishna, D. Suresh, P.P. George, J.T. Mague, Polyhedron 25 (2006)
3215;
Supplementary material
CCDC 761619, 761620, 761621, 761622 contain the supplemen-
tary crystallographic data for 1–3 and 5. These data can be ob-