6
P. Kaszynski, N. D. McMurdie and J. Michl, J. Org. Chem., 1991,
56, 307; P. Kaszynski, A. C. Friedli and J. Michl, J. Am. Chem.
Soc., 1992, 114, 601.
experimental data conÐrmed our theoretical prediction that
c-dissociation would be a signiÐcant process for loss of t-Bu~
from radical 1c. The rate of dissociation of 1c is not large at
7
8
9
E. W. Della, P. E. Pigou, C. H. Schiesser and D. K. Taylor, J.
Org. Chem., 1991, 56, 4659.
room temperature [k (25 ¡C) \ 6 ] 103 s~1], but the reaction
d
gains in importance at higher temperatures. The experimental
A. Almenningen, B. Andersen and B. A. Nyhus, Acta Chem.
Scand., 1971, 25, 1217.
K. B. Wiberg, C. M. Hadad, S. Sieber and P. v. R. Schleyer, J.
Am. Chem. Soc., 1992, 114, 5820.
Arrhenius activation energy refers to the dissociation in solu-
tion for T [ 273 K and is therefore not directly comparable
with the computed *E values (Table 3) which refer to iso-
d
10 See, for example, R. C. Fort and P. v. R. Schleyer, J. Am. Chem.
Soc., 1971, 93, 3189; C. Ruchardt, Angew. Chem., Int. Ed. Engl.,
1970, 9, 830; P. S. Engel, Chem. Rev., 1980, 80, 99.
11 C. Ruchardt, K. Herwig and S. Eichler, T etrahedron L ett., 1969,
421; B. Giese, T etrahedron L ett., 1979, 857; B. Giese and J. Stell-
mach, Chem. Ber., 1980, 113, 3294.
12 J. T. Banks, K. U. Ingold, E. W. Della and J. C. Walton, T etra-
hedron L ett., 1996, 37, 8059.
13 K. P. Dockery and W. G. Bentrude, J. Am. Chem. Soc., 1997, 119,
lated molecules. Normally, however, experimental activation
energies for neutral free radical reactions in hydrocarbon solu-
tions are very similar to the corresponding gas phase values.
There is a signiÐcant discrepancy of about a factor of two
between the calculated *E s and the experimental activation
a
energy. Highly strained open shell species such as 1 and 2 are
a severe test of theory and this is shown by the considerable
swings from level to level in the calculated energy di†erences;
perhaps a more sophisticated basis set is needed. The experi-
mental pre-exponential factor is on the low side. An increase
in this would lead to a correspondingly higher activation
energy, perhaps as high as 15 kcal mol~1. Taking the poten-
tial error limits on both calculated and experimental data into
account, the di†erence between theory and experiment is not
inordinate.
1388.
14 U. Bunz, K. Polborn, H.-U. Wagner and G. Szeimies, Chem. Ber.,
1988, 121, 1785.
15 P. F. McGarry, L. J. Johnston and J. C. Scaiano, J. Org. Chem.,
1989, 54, 6133.
16 D. Feller and E. R. Davidson, J. Am. Chem. Soc., 1987, 109, 4133.
17 W. Adcock, G. T. Binmore, A. R Krstic, J. C. Walton and J.
Wilkie, J. Am. Chem. Soc., 1995, 117, 2758.
18 K. B. Wiberg and F. H. Walker, J. Am. Chem. Soc., 1982, 104,
5239; K. B. Wiberg, T etrahedron L ett., 1985, 26, 599.
19 E. W. Della and D. K. Taylor, J. Org. Chem., 1994, 59, 2986.
20 E. W. Della, D. K. Taylor and J. Tsanaktsidis, T etrahedron L ett.,
1990, 36, 5219.
21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A.
Petersson, J. A. Montgomery, K. Raghavachari, M. A. Allaham,
V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B.
Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y.
Ayala, W. Chen, M. W. Wong, J. L. Anders, E. S. Replogle, R.
Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J.
Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A.
Pople, Gaussian 94, Revisions D.4 and E.1, Gaussian, Pittsburg,
PA, 1995.
Conclusions
Ab initio computations predict that radical additions to
[1.1.1]propellane are exothermic and should occur with low
activation energies. This is in good agreement with qualitative
experimental evidence. Calculated enthalpies and activation
energies indicated that the reverse c-dissociations of 3-
alkylbicyclo[1.1.1]pent-1-yl radicals could be important for
extrusion of stabilised radicals. Experimentally, loss of t-Bu~
from 1c was conÐrmed and the kinetic study indicated a
remarkably low activation energy for a CÈC bond Ðssion. This
result implies that similar loss of other thermodynamically
stabilised radicals such as benzyl and allyl should become
22 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
23 L. Hedberg and K. Hedberg, J. Am. Chem. Soc., 1985, 107, 7257.
24 K. B. Wiberg, W. P. Dailey, F. H. Walker, S. T. Waddell, L. S.
Crocker and M. Newton, J. Am. Chem. Soc., 1985, 107, 7247.
25 K. W. Cox, M. D. Harmony, G. Nelson and K. B. Wiberg, J.
Chem. Phys., 1968, 50, 1976; J. Am. Chem. Soc., 1968, 90, 3395.
26 J. Pacansky and M. Yoshimine, J. Phys. Chem., 1985, 89, 1880.
27 L. A. Curtis and J. A. Pople, J. Chem. Phys., 1988, 88, 7405.
28 L. A. Curtis and J. A. Pople, J. Chem. Phys., 1989, 91, 2420.
29 A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502; W. J.
Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio
Molecular Orbital T heory, Wiley, New York, 1986, ch. 6, p. 133.
30 J. Berkowitz, C. B. Ellison and D. Gutman, J. Phys. Chem., 1994,
98, 2744.
competitive
at
temperatures
above
ambient.
3-
Benzylbicyclo[1.1.1]pentane derivatives have been prepared
via 3-benzylbicyclo[1.1.1]pent-1-yl radicals.13,38 However, the
addition of benzyl bromide to 2 did not proceed smoothly38
and a possible cause of this is obviously competition from the
c-dissociation. The formation of [1.1.1]propellane substan-
tially promotes CÈC bond Ðssion, which occurs much more
readily in 1 than in analogous c-dissociations of the next
lower homologue i.e. 3-substituted-cyclobutyl radicals 4. c-
Dissociation of 1 is also more facile than analogous b-
scissions of alkyl radicals to yield alkenes.
31 D. F. McMillen and D. M. Golden, Annu. Rev. Phys. Chem.,
1982, 33, 493.
32 J. C. Scaiano and P. F. McGarry, T etrahedron L ett., 1993, 34,
The authors thank the UK Computational Chemistry Facility
for the allocation of time on the DEC 8400 superscalar service
(Columbus), Drs. K. U. Ingold, J. W. Essex and O. Parchment
for helpful discussions and NATO for a travel grant.
1243.
33 K. U. Ingold and J. C. Walton, Acc. Chem. Res., 1986, 19, 72, and
references cited therein.
34 K. Semmler, G. Szeimies and G. Belzner, J. Am. Chem. Soc., 1985,
107, 6410; J. Belzner, U. Bunz, K. Semmler, G. Szeimies, K. Opitz
and A. Schluter, Chem. Ber., 1989, 112, 397.
35 P. Kaszynski and J. Michl, J. Org. Chem., 1988, 53, 4593.
36 C. Chatgilialoglu, K. U. Ingold and J. C. Scaiano, J. Am. Chem.
Soc., 1981, 103, 7739.
References
1
D. Griller, K. U. Ingold, P. J. Krusic and H. Fischer, J. Am.
Chem. Soc., 1978, 100, 6750.
J. C. Walton, Chem. Soc. Rev., 1992, 21, 105.
The tetrahedryl radical is even more ““tied backÏÏ but will be
unstable and has not been reported.
2
3
37 L. J. Johnston, J. Lusztyk, D. D. M. Wayner, A. N. Abeywick-
reyma, A. L. J. Beckwith, J. C. Scaiano and K. U. Ingold, J. Am.
Chem. Soc., 1985, 107, 4594.
4
5
E. W. Della and I. J. Lochert, Org. Prep. Proced. Int., 1996, 28,
38 P. Kaszynski and J. Michl, J. Am. Chem. Soc., 1988, 110, 5225.
411.
K. B. Wiberg and S. T. Waddell, J. Am. Chem. Soc., 1990, 112,
2194.
Paper 8/08744J
1404
Phys. Chem. Chem. Phys., 1999, 1, 1399È1404